Mediation and life course epidemiology: challenges and examples

Bianca De Stavola and Rhian Daniel
London School of Hygiene and Tropical Medicine

Methods for Longitudinal Data Analysis in the Social Sciences
LSE, 8 September 2014
In many research contexts we might be interested in the extent to which the effect of some exposure X on some outcome Y acts via an intermediate variable M.

\[X \rightarrow M \rightarrow Y \]
• In many research contexts we might be interested in the extent to which the effect of some exposure X on some outcome Y acts via an intermediate variable M.

- In other words we are interested in the study of mediation.
Focus on **distal exposures** for later life outcomes,
Focus on **distal exposures** for later life outcomes, with the aim of disentangling the underlying processes.
Mediation in life course epidemiology

Focus on **distal exposures** for later life outcomes, with the aim of disentangling the underlying processes.
Say the diagram is correct, then . . .
Say the diagram is correct, then ... we might wish to study this pathway ...
Say the diagram is correct, then ... we might wish to study this pathway ... and this one, ...
Say the diagram is correct, then . . . we might wish to study this pathway . . . and this one, . . . and this, . . .
Say the diagram is correct, then . . . we might wish to study this pathway . . . and this one, . . . and this, . . . and this, . . .
Say the diagram is correct, then . . . we might wish to study this pathway . . . and this one, . . . and this, . . . and this, . . . and this,
Say the diagram is correct, then . . . we might wish to study this pathway . . . and this one, . . . and this, . . . and this, . . . and this, and this . . .
Say the diagram is correct, then . . . we might wish to study this pathway . . . and this one, . . . and this, . . . and this, . . . and this, and this . . . and this
But how?

Say the diagram is correct, then . . . we might wish to study this pathway . . . and this one, . . . and this, . . . and this, . . . and this, and this . . . and this
The study of mediation

- Two main strands in the literature for the study of mediation:
 - Social sciences / psychometrics (MacKinnon, 1986)
 - Causal inference literature (Robins and Greenland, 1992; Pearl, 2001)
- First more accessible, but also misused/misunderstood
- Second more rigorous and more general
Two main strands in the literature for the study of mediation:

- Social sciences / psychometrics (MacKinnon, 1986)
- Causal inference literature (Robins and Greenland, 1992; Pearl, 2001)

First more accessible, but also misused/misunderstood

Second more rigorous and more general

Aims:

- Describe these approaches
- Discuss an example
- Outline some extensions
1 Introduction

2 Structural Equation Models
 A linear SEM
 Problems

3 Novel approaches from causal inference
 Potential outcomes
 Unambiguous estimands
 Assumptions and estimation

4 Example: ED in adolescent girls

5 Multiple mediators

6 Summary

7 References
1 Introduction

2 Structural Equation Models
 A linear SEM
 Problems

3 Novel approaches from causal inference
 Potential outcomes
 Unambiguous estimands
 Assumptions and estimation

4 Example: ED in adolescent girls

5 Multiple mediators

6 Summary

7 References
• Adding a vector of confounders C to our original diagram,
A simplified setting

- Adding a vector of confounders C to our original diagram,
- and letting M and Y be continuous . . .
A simplified setting

- Adding a vector of confounders C to our original diagram,
- and letting M and Y be continuous . . .
- . . . we now consider a linear structural equations model.
A linear Structural Equation Model

Wright, 1921

\[
\begin{align*}
E(Y|C, X, M) &= \alpha_0 + \alpha_1 X + \alpha_2 M + \alpha_3^T C \\
E(M|C, X) &= \gamma_0 + \gamma_1 X + \gamma_2^T C
\end{align*}
\]
A linear Structural Equation Model

Wright, 1921

\[
\begin{align*}
E(Y|C, X, M) &= \alpha_0 + \alpha_1 X + \alpha_2 M + \alpha_3^T C \\
E(M|C, X) &= \gamma_0 + \gamma_1 X + \gamma_2^T C
\end{align*}
\]
A linear Structural Equation Model

Wright, 1921

\[
\begin{align*}
E(Y|C,X,M) &= \alpha_0 + \alpha_1 X + \alpha_2 M + \alpha_3^T C \\
E(M|C,X) &= \gamma_0 + \gamma_1 X + \gamma_2^T C
\end{align*}
\]
A linear Structural Equation Model

Wright, 1921

\[
\alpha_1
\]

\[
\alpha_2
\]

\[
\alpha_3
\]

\[
\{ E(Y|C, X, M) = \alpha_0 + \alpha_1 X + \alpha_2 M + \alpha_3^T C \\
E(M|C, X) = \gamma_0 + \gamma_1 X + \gamma_2^T C \}
\]

- \(\alpha_1\) is interpreted as the direct effect of \(X\) (not via \(M\)),

- \(\gamma_1\) as the indirect effect (via \(M\)).
A linear Structural Equation Model

Wright, 1921

\[
\begin{align*}
E(Y|C, X, M) &= \alpha_0 + \alpha_1 X + \alpha_2 M + \alpha_3^T C \\
E(M|C, X) &= \gamma_0 + \gamma_1 X + \gamma_2^T C
\end{align*}
\]

• \(\alpha_1\) is interpreted as the direct effect of \(X\) (not via \(M\)).
A linear Structural Equation Model

\[
\begin{align*}
E(Y|C, X, M) &= \alpha_0 + \alpha_1 X + \alpha_2 M + \alpha_3^T C \\
E(M|C, X) &= \gamma_0 + \gamma_1 X + \gamma_2^T C
\end{align*}
\]

- \(\alpha_1\) is interpreted as the direct effect of \(X\) (not via \(M\)),
- and \(\gamma_1 \alpha_2\) as the indirect effect (via \(M\)).
A linear Structural Equation Model

Wright, 1921

\[
\begin{align*}
E(Y|C, X, M) &= \alpha_0 + \alpha_1 X + \alpha_2 M + \alpha_3^T C \\
E(M|C, X) &= \gamma_0 + \gamma_1 X + \gamma_2^T C
\end{align*}
\]

- \(\alpha_1\) is interpreted as the direct effect of \(X\) (not via \(M\)),
- and \(\gamma_1 \alpha_2\) as the indirect effect (via \(M\)).

Estimation (generally) via MLE.
1. **Lack of generality**: Definitions are specific to simple linear models (in particular no $X-M$ interactions).
Problems
(Imai et al., 2010; Vansteelandt, 2011)

1. **Lack of generality**: Definitions are specific to simple linear models (in particular no $X-M$ interactions).

2. **Identifiability**: often not appreciated that unaccounted confounders V of the $M-Y$ relationship:

\[
\begin{align*}
&C \\
\rightarrow & M \\
\rightarrow & X \\
\rightarrow & Y \\
\end{align*}
\]

would bias the partitioning of direct/indirect effects.
1. **Lack of generality:** Definitions are specific to simple linear models (in particular no X-M interactions).

2. **Identifiability:** often not appreciated that unaccounted confounders V of the M–Y relationship:

 ![Diagram](image)

 would bias the partitioning of direct/indirect effects.

3. **Intermediate confounding**
 (De Stavola *et al.*, 2014).
Problem 3: intermediate confounding
Problem 3: intermediate confounding

- Intermediate confounders L are common causes of M and Y that are affected by X.

![Diagram showing causal relationships between variables C, X, M, Y, and L]
Problem 3: intermediate confounding

- Intermediate confounders L are common causes of M and Y that are affected by X.
- L is a confounder for the M-Y relation but is also on a causal pathway from X.
Intermediate confounders L are common causes of M and Y that are affected by X.

L is a confounder for the M-Y relation but is also on a causal pathway from X.

In a way we should and also should not condition on L when estimating α_1 and α_2.
Problem 3: intermediate confounding

- Intermediate confounders L are common causes of M and Y

Recent contributions from the causal inference literature bring:
- clarity to these issues
- greater flexibility to the modelling

estimating α_1 and α_2.
Outline

1 Introduction
2 Structural Equation Models
 A linear SEM
 Problems
3 Novel approaches from causal inference
 Potential outcomes
 Unambiguous estimands
 Assumptions and estimation
4 Example: ED in adolescent girls
5 Multiple mediators
6 Summary
7 References
Explicit recognition that mediation analysis implies the study of causal effects.
• Explicit recognition that that mediation analysis implies the study of causal effects.

• Causal, unlike associational, quantities are not just about describing this world, but involve a notion of *how the world would have been had something been different*.
• Explicit recognition that that mediation analysis implies the study of causal effects.

• Causal, unlike associational, quantities are not just about describing this world, but involve a notion of how the world would have been had something been different.

• For this reason, the definition of direct and indirect effects involve quantities that are not all observable:
The causal inference framework
Potential outcomes and mediators

- Explicit recognition that mediation analysis implies the study of causal effects.

- Causal, unlike associational, quantities are not just about describing this world, but involve a notion of how the world would have been had something been different.

- For this reason, the definition of direct and indirect effects involve quantities that are not all observable:
 - $Y(x)$: the potential values of Y that would have occurred had X been set, possibly counter to fact, to the value x.

Explicit recognition that mediation analysis implies the study of causal effects.

Causal, unlike associational, quantities are not just about describing this world, but involve a notion of *how the world would have been had something been different*.

For this reason, the definition of direct and indirect effects involve quantities that are not all observable:

- $Y(x)$: the potential values of Y that would have occurred had X been set, possibly counter to fact, to the value x.
- $M(x)$: the potential values of M that would have occurred had X been set, possibly counter to fact, to the value x.
The causal inference framework
Potential outcomes and mediators

- Explicit recognition that mediation analysis implies the study of causal effects.

- Causal, unlike associational, quantities are not just about describing this world, but involve a notion of *how the world would have been had something been different.*

- For this reason, the definition of direct and indirect effects involve quantities that are not all observable:
 - $Y(x)$: the *potential values* of Y that would have occurred had X been set, possibly counter to fact, to the value x.
 - $M(x)$: the *potential values* of M that would have occurred had X been set, possibly counter to fact, to the value x.
 - Similarly for $Y(x, m)$ and $Y(x, M(x^*))$.
The causal inference framework
Potential outcomes and mediators

• Explicit recognition that that mediation analysis implies the study of causal effects.

• Causal, unlike associational, quantities are not just about describing this world, but involve a notion of how the world would have been had something been different.

• For this reason, the definition of direct and indirect effects involve quantities that are not all observable:
 - \(Y(x) \): the potential values of \(Y \) that would have occurred had \(X \) been set, possibly counter to fact, to the value \(x \).
 - \(M(x) \): the potential values of \(M \) that would have occurred had \(X \) been set, possibly counter to fact, to the value \(x \).
 - Similarly for \(Y(x, m) \) and \(Y(x, M(x^*)) \).

For simplicity, consider the case where \(X \) is binary
The total causal effect of X on Y expressed as a mean difference is

$$\text{TCE} = E\{Y(1)\} - E\{Y(0)\}.$$
The total causal effect of X on Y expressed as a mean difference is

$$\text{TCE} = E \{ Y (1) \} - E \{ Y (0) \}.$$

This (as always with a causal contrast) is a comparison of two hypothetical worlds.
• The total causal effect of X on Y expressed as a mean difference is

$$TCE = E \{ Y(1) \} - E \{ Y(0) \}.$$

• This (as always with a causal contrast) is a comparison of two hypothetical worlds.

• In the first, X is set to 1, and in the second X is set to 0.
The total causal effect of X on Y expressed as a mean difference is

$$\text{TCE} = E\{Y(1)\} - E\{Y(0)\}.$$

This (as always with a causal contrast) is a comparison of two hypothetical worlds.

In the first, X is set to 1, and in the second X is set to 0.

Note that this can also be written as

$$\text{TCE} = E[Y\{1, M(1)\}] - E[Y\{0, M(0)\}].$$
• The controlled direct effect of \(X \) on \(Y \) when \(M \) is controlled at \(m \), expressed as a mean difference is

\[
\text{CDE}(m) = E \{ Y(1, m) \} - E \{ Y(0, m) \}.
\]
• The controlled direct effect of X on Y when M is controlled at m, expressed as a mean difference is

\[
\text{CDE}(m) = E\{Y(1, m)\} - E\{Y(0, m)\}.
\]

• This is a comparison of two hypothetical worlds.
The controlled direct effect of X on Y when M is controlled at m, expressed as a mean difference is

$$CDE(m) = E\{Y(1, m)\} - E\{Y(0, m)\}.$$

This is a comparison of two hypothetical worlds.

In the first, X is set to 1, and in the second X is set to 0. In both worlds, M is set to m.
The controlled direct effect of X on Y when M is controlled at m, expressed as a mean difference is

$$CDE(m) = E\{Y(1,m)\} - E\{Y(0,m)\}.$$

This is a comparison of two hypothetical worlds. In the first, X is set to 1, and in the second X is set to 0. In both worlds, M is set to m. By keeping M fixed at m, we are getting at the direct effect of X, unmediated by M.
• Ideally, we would express the total causal effect as the sum of a direct and an indirect effect.
• Ideally, we would express the total causal effect as the sum of a direct and an indirect effect.

• But this turns out not to be possible using this definition of a controlled direct effect.
• Ideally, we would express the total causal effect as the sum of a direct and an indirect effect.
• But this turns out not to be possible using this definition of a controlled direct effect.
• For this reason, it is useful to have a different definition of a direct effect.
The natural direct effect of X on Y expressed as a mean difference is

$$\text{NDE} = E[Y \{1, M(0)\}] - E[Y \{0, M(0)\}] .$$
The natural direct effect of X on Y expressed as a mean difference is

$$
NDE = E[Y\{1, M(0)\}] - E[Y\{0, M(0)\}].
$$

This is a comparison of two hypothetical worlds.
The natural direct effect of X on Y expressed as a mean difference is

$$\text{NDE} = E[Y\{1, M(0)\}] - E[Y\{0, M(0)\}].$$

- This is a comparison of two hypothetical worlds.
- In the first, X is set to 1, and in the second X is set to 0. In both worlds, M is set to $M(0)$, the value it would take if X were set to 0.
The natural direct effect of X on Y expressed as a mean difference is

$$NDE = E[Y \{1, M(0)\}] - E[Y \{0, M(0)\}].$$

This is a comparison of two hypothetical worlds.

In the first, X is set to 1, and in the second X is set to 0. In both worlds, M is set to $M(0)$, the value it would take if X were set to 0.

Since M is the same (within subject) in both worlds, we are still getting at the direct effect of X.
• The natural direct effect of X on Y expressed as a mean difference is

\[
NDE = E \left[Y \{1, M(0)\} \right] - E \left[Y \{0, M(0)\} \right].
\]

• This is a comparison of two hypothetical worlds.
• In the first, X is set to 1, and in the second X is set to 0. In both worlds, M is set to $M(0)$, the value it would take if X were set to 0.
• Since M is the same (within subject) in both worlds, we are still getting at the direct effect of X.
• If no individual-level interaction between X and M, $CDE(m) = NDE \ \forall m$.
• The advantage of defining the natural direct effect in this way, is that it leads to a natural *indirect* effect.
The advantage of defining the natural direct effect in this way, is that it leads to a natural \textit{indirect} effect.

The \textbf{natural indirect effect} of X on Y is

\[
\text{NIE} = E \left[Y \{1, M(1) \} \right] - E \left[Y \{1, M(0) \} \right].
\]
Natural indirect effect
Pearl, 2001; Robins and Greenland, 1992

- The advantage of defining the natural direct effect in this way, is that it leads to a natural *indirect* effect.
- The **natural indirect effect** of X on Y is

$$\text{NIE} = E[Y \{1, M(1)\}] - E[Y \{1, M(0)\}]$$

- This is a comparison of two hypothetical worlds.
The advantage of defining the natural direct effect in this way, is that it leads to a natural indirect effect.

The natural indirect effect of X on Y is

$$\text{NIE} = E[Y\{1, M(1)\}] - E[Y\{1, M(0)\}].$$

This is a comparison of two hypothetical worlds.

In the first, M is set to $M(1)$ and in the second M is set to $M(0)$. In both worlds, X is set to 1.
• The advantage of defining the natural direct effect in this way, is that it leads to a natural indirect effect.

• The natural indirect effect of X on Y is

\[\text{NIE} = E[Y \{1, M(1)\}] - E[Y \{1, M(0)\}] . \]

• This is a comparison of two hypothetical worlds.
• In the first, M is set to $M(1)$ and in the second M is set to $M(0)$. In both worlds, X is set to 1.
• X is allowed to influence Y only through its influence on M. Thus it is an indirect effect through M.
Effect decomposition:
The sum of the natural direct and indirect effects is the total causal effect:

\[
\text{NDE} + \text{NIE} = E[Y\{1, M(0)\}] - E[Y\{0, M(0)\}]
+ E[Y\{1, M(1)\}] - E[Y\{1, M(0)\}] = \text{TCE}
\]
• **Effect decomposition:**
The sum of the natural direct and indirect effects is the total causal effect:

\[
NDE + NIE = E [Y \{1, M(0)\}] - E [Y \{0, M(0)\}]
+ E [Y \{1, M(1)\}] - E [Y \{1, M(0)\}] = TCE
\]

• **Generality:**
These definitions of mediation parameters can be generalized to multivariate exposures and mediators.
• **Effect decomposition:**
 The sum of the natural direct and indirect effects is the total causal effect:

 \[
 \text{NDE} + \text{NIE} = E[Y\{1, M(0)\}] - E[Y\{0, M(0)\}] \\
 + E[Y\{1, M(1)\}] - E[Y\{1, M(0)\}] = \text{TCE}
 \]

• **Generality:**
 These definitions of mediation parameters can be generalized to multivariate exposures and mediators.

• **Identification:**
 As well as technical assumptions of no interference and consistency, there are no unmeasured confounding assumptions, and more...
Assumptions for identification: TCE

- No unmeasured confounding of the X–Y relationship.
- No unmeasured confounding of the $X-Y$ or $M-Y$ relationships.
Assumptions for identification: CDE

- No unmeasured confounding of the $X-Y$ or $M-Y$ relationships.
Assumptions for identification: NDE, NIE

- No unmeasured confounding of the $X \rightarrow Y$, $M \rightarrow Y$, or $X \rightarrow M$ relationships.
Assumptions for identification: NDE, NIE

- No unmeasured confounding of the $X-Y$, $M-Y$, or $X-M$ relationships.
• No unmeasured confounding of the $X-Y$, $M-Y$, or $X-M$ relationships.
Assumptions for identification: NDE, NIE

- No unmeasured confounding of the $X-Y$, $M-Y$, or $X-M$ relationships.
- AND, in addition, either:
No unmeasured confounding of the $X-Y$, $M-Y$, or $X-M$ relationships.

AND, in addition, either:

- No intermediate confounding, or
Assumptions for identification: NDE, NIE

- No unmeasured confounding of the $X-Y$, $M-Y$, or $X-M$ relationships.
- AND, in addition, either:
 - No intermediate confounding, or
 - Some restriction on the extent to which X and M interact in their effect on Y (Petersen et al, 2006).
Wide range of options, for most combinations of M and Y:

- **G-computation**—very flexible and efficient but heavy on parametric modelling assumptions:
Wide range of options, for most combinations of M and Y:

- **G-computation**—very flexible and efficient but heavy on parametric modelling assumptions:
 - requires correct specification of all relevant conditional expectations and distributions
 - implemented in `gformula` command in Stata (Daniel *et al.*, 2011)
Wide range of options, for most combinations of M and Y:

- **G-computation**—very flexible and efficient but heavy on parametric modelling assumptions:
 - requires correct specification of all relevant conditional expectations and distributions
 - implemented in `gformula` command in Stata (Daniel *et al.*, 2011)

- Semi-parametric methods make fewer parametric assumptions:
 - **Inverse probability of treatment weighting (IPTW):**
 - not practical when M is continuous
 - Various flavours of **G-estimation**
 - generally more complex to implement and understand
• ED comprise a variety of heterogeneous diseases
Eating disorders (ED) in adolescent girls

- ED comprise a variety of heterogeneous diseases
- Maternal body size is a possible risk factor
Eating disorders (ED) in adolescent girls

- ED comprise a variety of heterogeneous diseases
- Maternal body size is a possible risk factor
- Childhood growth may act as mediator (with size at birth an intermediate confounder).

![Diagram showing the relationship between Maternal size, Childhood growth, and ED]
Eating disorders (ED) in adolescent girls

- ED comprise a variety of heterogeneous diseases
- Maternal body size is a possible risk factor
- Childhood growth may act as mediator (with size at birth an intermediate confounder).
Eating disorders (ED) in adolescent girls

- ED comprise a variety of heterogeneous diseases
- Maternal body size is a possible risk factor
- Childhood growth may act as mediator (with size at birth an intermediate confounder).

"Is the effect of maternal size on her daughter’s ED scores mediated via childhood growth?"
The ALSPAC Study

- Cohort of children born in 1990-92 in SW England, followed from birth at set intervals; 5,000 girls.
The ALSPAC Study

- Cohort of children born in 1990-92 in SW England, followed from birth at set intervals; 5,000 girls.

- Outcomes: 3 types of ED symptoms scores, derived from parental reports collected when child was 13.5y (Micali et al. 2014):
 - “Binge eating”,
 - “Fear of weight gain”,
 - “Food Restriction”
• Cohort of children born in 1990-92 in SW England, followed from birth at set intervals; 5,000 girls.

• Outcomes: 3 types of ED symptoms scores, derived from parental reports collected when child was 13.5y (Micali et al. 2014):
 • “Binge eating”,
 • “Fear of weight gain”,
 • “Food Restriction”

• Exposure: pre-pregnancy maternal BMI (< 18.5, 18.5 – 25.0, > 25.0kg/m²).
The ALSPAC Study

• Cohort of children born in 1990-92 in SW England, followed from birth at set intervals; 5,000 girls.

• **Outcomes**: 3 types of ED symptoms scores, derived from parental reports collected when child was 13.5y (Micali *et al.* 2014):

 • “*Binge eating*”,
 • “*Fear of weight gain*”,
 • “*Food Restriction*”

• **Exposure**: pre-pregnancy maternal BMI (< 18.5, 18.5 – 25.0, > 25.0kg/m²).

• **Mediators**: BMI at 7y and BMI velocity at 7-12y.
The ALSPAC Study

- Cohort of children born in 1990-92 in SW England, followed from birth at set intervals; 5,000 girls.

- **Outcomes**: 3 types of ED symptoms scores, derived from parental reports collected when child was 13.5y (Micali *et al.* 2014):
 - “Binge eating”
 - “Fear of weight gain”
 - “Food Restriction”

- **Exposure**: pre-pregnancy maternal BMI (< 18.5, 18.5 – 25.0, > 25.0kg/m²).

- **Mediators**: BMI at 7y and BMI velocity at 7-12y.

- **Background confounders**: pre-pregnancy maternal psychopathology, maternal age, education, social class.
Cohort of children born in 1990-92 in SW England, followed from birth at set intervals; 5,000 girls.

Outcomes: 3 types of ED symptoms scores, derived from parental reports collected when child was 13.5y (Micali et al. 2014):

- “Binge eating”,
- “Fear of weight gain”,
- “Food Restriction”

Exposure: pre-pregnancy maternal BMI ($<$ 18.5, 18.5 – 25.0, $>$ 25.0kg/m2).

Mediators: BMI at 7y and BMI velocity at 7-12y.

Background confounders: pre-pregnancy maternal psychopathology, maternal age, education, social class.

The ALSPAC Study

- Cohort of children born in 1990-92 in SW England, followed from birth at set intervals; 5,000 girls.

- Outcomes: 3 types of ED symptoms scores, derived from parental reports collected when child was 13.5y (Micali et al. 2014):
 - “Binge eating”
 - “Fear of weight gain”
 - “Food Restriction”

- Exposure: pre-pregnancy maternal BMI (< 18.5, 18.5 – 25.0, > 25.0kg/m^2).

- Mediators: BMI at 7y and BMI velocity at 7-12y.

- Background confounders: pre-pregnancy maternal psychopathology, maternal age, education, social class.

Estimation: Fully-parametric g-computation via Monte Carlo simulation (with imputation and bootstrapped SEs).
Results

N=3,526

Maternal underweight

Maternal overweight

Expected difference in ED score

Bingeing

Concern

Restrictions

Total

Mediated via childhood growth

Not mediated

Maternal underweight

Maternal overweight

De Stavola/Mediation
Results

N=3,526

<table>
<thead>
<tr>
<th>Maternal underweight</th>
<th>Maternal overweight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected difference in ED score</td>
<td></td>
</tr>
<tr>
<td>Bingeing</td>
<td>Concern</td>
</tr>
<tr>
<td>Bingeing</td>
<td>Concern</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Mediated via childhood growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal underweight</td>
<td>Maternal overweight</td>
</tr>
</tbody>
</table>

De Stavola/Mediation

27/35
Results

N=3,526

<table>
<thead>
<tr>
<th></th>
<th>Bingeing</th>
<th>Concern</th>
<th>Restrictions</th>
<th>Bingeing</th>
<th>Concern</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal underweight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected difference in ED score</td>
<td>-1</td>
<td>-.5</td>
<td>.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediated via childhood growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not mediated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal overweight</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected difference in ED score</td>
<td>-1</td>
<td>-.5</td>
<td>.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mediated via childhood growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not mediated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De Stavola/Mediation
Results

N=3,526

- Harmful effect of maternal overweight completely mediated by childhood growth
- Protective effect of maternal underweight reduced by harmful ‘direct’ effect
The counterfactual framework offers general definitions of mediation effects and appropriate estimation methods.
Multiple mediators

- The counterfactual framework offers general definitions of mediation effects and appropriate estimation methods.

- Have discussed settings with a single mediator, but in life course epidemiology we are often interested in many!
Multiple mediators

• The counterfactual framework offers general definitions of mediation effects and appropriate estimation methods.

• Have discussed settings with a single mediator, but in life course epidemiology we are often interested in many!

• With multiple mediators, far greater complexities are introduced (Daniel et al., 2014), in particular with regards to:
Multiple mediators

• The counterfactual framework offers general definitions of mediation effects and appropriate estimation methods.

• Have discussed settings with a single mediator, but in life course epidemiology we are often interested in many!

• With multiple mediators, far greater complexities are introduced (Daniel et al., 2014), in particular with regards to:
 • Definitions of mediated effects: they involve more complex counterfactuals
Multiple mediators

- The counterfactual framework offers general definitions of mediation effects and appropriate estimation methods.

- Have discussed settings with a single mediator, but in life course epidemiology we are often interested in many!

- With multiple mediators, far greater complexities are introduced (Daniel et al., 2014), in particular with regards to:
 - **Definitions** of mediated effects: they involve more complex counterfactuals
 - **Assumptions**: they involve many more components of the diagram
• The counterfactual framework offers general definitions of mediation effects and appropriate estimation methods.

• Have discussed settings with a single mediator, but in life course epidemiology we are often interested in many!

• With **multiple mediators**, far greater complexities are introduced (Daniel *et al.* , 2014), in particular with regards to:

 • **Definitions** of mediated effects: they involve more complex counterfactuals
 • **Assumptions**: they involve many more components of the diagram
 • **Decomposition** into mediated effects via individual mediators: there are several alternative options
The counterfactual framework offers general definitions of mediation effects and appropriate estimation methods.

Have discussed settings with a single mediator, but in life course epidemiology we are often interested in many!

With multiple mediators, far greater complexities are introduced (Daniel et al., 2014), in particular with regards to:

- **Definitions** of mediated effects: they involve more complex counterfactuals
- **Assumptions**: they involve many more components of the diagram
- **Decomposition** into mediated effects via individual mediators: there are several alternative options
- **Estimation**: necessary to fix a parameter (κ) that is not estimable and carry out sensitivity analyses
Does birth weight also play a mediating role?

Results: Maternal overweight

$\kappa = 1$

BW and (size and velocity) as mediators

(24 decompositions, kappa=1)
Does birth weight also play a mediating role?

Results: Maternal underweight

\[\kappa = 1 \]
Does birth weight also play a mediating role?

Results: Maternal underweight

\[\kappa = 1 \]

- Consistent harmful/protective effects primarily via childhood growth.
- Harmful direct effect for maternal underweight; also via BW only.
- (Hardly any variation with \(\kappa \)).
Outline

1 Introduction

2 Structural Equation Models
 A linear SEM
 Problems

3 Novel approaches from causal inference
 Potential outcomes
 Unambiguous estimands
 Assumptions and estimation

4 Example: ED in adolescent girls

5 Multiple mediators

6 Summary

7 References
• Mediation, particularly effect decomposition, is a subtle business.
• Mediation, particularly effect decomposition, is a subtle business.

• Traditional approaches are somewhat limited (and vague).
• Mediation, particularly effect decomposition, is a subtle business.

• Traditional approaches are somewhat limited (and vague).

• Newer contributions have led to more hygienic thinking on these issues and more flexible methods.
Concluding remarks

- Mediation, particularly effect decomposition, is a subtle business.

- Traditional approaches are somewhat limited (and vague).

- Newer contributions have led to more hygienic thinking on these issues and more flexible methods.

- But there can be no panacea:

 - Very strong assumptions are required for such an ambitious causal endeavour. (These (and more) were needed in the traditional approach!).
Mediation, particularly effect decomposition, is a subtle business.

Traditional approaches are somewhat limited (and vague).

Newer contributions have led to more hygienic thinking on these issues and more flexible methods.

But there can be no panacea:

- Very strong assumptions are required for such an ambitious causal endeavour.
 (These (and more) were needed in the traditional approach!).

- Transparency of aims and assumptions is the key.
• Mediation, particularly effect decomposition, is a subtle business.

• Traditional approaches are somewhat limited (and vague).

• Newer contributions have led to more hygienic thinking on these issues and more flexible methods.

• But there can be no panacea:
 • Very strong assumptions are required for such an ambitious causal endeavour.
 (These (and more) were needed in the traditional approach!).

• Transparency of aims and assumptions is the key.

Thank you!
1 Introduction

2 Structural Equation Models
 A linear SEM
 Problems

3 Novel approaches from causal inference
 Potential outcomes
 Unambiguous estimands
 Assumptions and estimation

4 Example: ED in adolescent girls

5 Multiple mediators

6 Summary

7 References
References

- Daniel RM, De Stavola BL, Cousens SN and Vansteelandt S. Causal mediation analysis with multiple mediators. (to appear in *Biometrics*).
- Pearl J. Direct and indirect effects. *Proceedings of the Seventeenth Conference on Uncertainty and Artificial Intelligence* 2001; San Francisco: Morgan Kaufmann.