

Modelling executive function test performance in children

Ivonne Solis-Trapala

NCRM Lancaster-Warwick Node

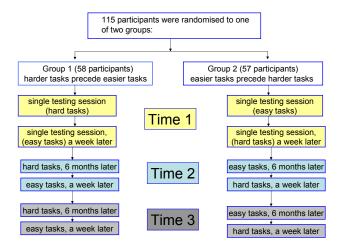
ESRC Research Festival 2008

Collaborative work

- Peter J. Diggle, Department of medicine
- Charlie Lewis, Department of psychology
- funded by the UK Economic and Social Research Council

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background

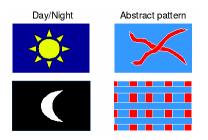

- What is executive function?
- Components: inhibitory control, attentional flexibility, working memory, planning

- Competing models
- Experiments conducted by Shimmon (2004)

Executive tests used

Component	Measure	Version 1	Version 2
Inhibitory	"Stroop"	Day/night	Abstract pattern
control			
Attentional	Card-sort	Face-down	Face-up
flexibility	(DCCS)		
Working	Boxes tasks	Scrambled	Stationary
memory			
	Digit-span	Backward	Forward
	(Times 2 & 3)		
Planning	Tower of London	Subgoal	No-subgoal
		Tower/Mixed	Tower/Mixed

A longitudinal study



Aims of the study

- 1. Methodological questions concerning each executive function. For example,
 - identify patterns on the dynamics of test performance, within single sessions and over time periods;

- evaluate the influence of one test upon another.
- 2. Relationships between executive functions

Inhibitory control

- abstract pattern (control)
- 16 trials at each session a week apart
- 3 sessions 6 months apart

Methodological questions

- Analyse key changes in the dynamics of test performance.
- Compare performance between abstract pattern and day/night tests.

- Evaluate the influence of one test upon another.
- Identify factors that influence performance e.g. age.

Modelling approach of IC data

- We assume the existence of an unobservable underlying ability, for each child. We represent such unobservable ability by a subject specific effect.
- Conditional on the subject specific effect we specify a dynamic model (Aalen et al, 2004) for each series of dependent outcomes.

We extend the model to include the effect of time between test sessions.

Model specification: Part I

conditioning on the past and subject specific effects

$$Y_{ijk}$$
 $i = 1, \dots, 32$ $j = 1, \dots, 115$ $k = 1, 2, 3$

$$\pi_{ijk} \equiv \Pr\left\{Y_{ijk} = 1 | Y_{i-1,j,k}, S_{ijk}, \boldsymbol{X}_{jk}, \boldsymbol{Z}_{ijk}, U_j; \boldsymbol{\phi}\right\}$$

$$logit(\pi_{ijk}) = log\left(\frac{\pi_{ijk}}{1 + \pi_{ijk}}\right)$$
$$= \mathbf{X}'_{jk}\mathbf{\beta} + \mathbf{Z}'_{ijk}\mathbf{\delta} + \gamma_1 Y_{i-1,j,k} + \gamma_2 S_{ijk} + U_j$$

We assume the U_j 's to be an independent random sample from a normal distribution.

Model specification. Part II

Two ways of looking at longitudinal change

 specify different sets of regression parameters at each time period

$$\operatorname{logit}(\pi_{ijk}) = \boldsymbol{X}'_{jk}\boldsymbol{\beta}_{k} + \boldsymbol{Z}'_{ijk}\boldsymbol{\delta}_{k} + \gamma_{1k}Y_{i-1,j,k} + \gamma_{2k}S_{ijk} + U_{jk}$$

 (ii) consider common regression parameters at three time periods and a period effect

$$\operatorname{logit}(\pi_{ijk}) = \boldsymbol{X}'_{jk}\boldsymbol{\beta} + \boldsymbol{Z}'_{ijk}\boldsymbol{\delta} + \gamma_1 Y_{i-1,j,k} + \gamma_2 S_{ijk} + \eta_k + U_j$$

Likelihood factorisation

Notation

We omit the index k without loss of generality. Let $\boldsymbol{\phi} = (\boldsymbol{\beta}, \boldsymbol{\delta}, \gamma_1, \gamma_2, \eta)'$ and $\boldsymbol{W}_{ij} = (\boldsymbol{X}_j, \boldsymbol{Z}_{ij}, Y_{i-1,j}, S_{ij})'$.

Thus

$$\eta_{ij} = \mathsf{logit}(\pi_{ij}) = oldsymbol{W}'_{ij} oldsymbol{\phi} + U_j$$

 \blacktriangleright Vector $\pmb{\phi}$ contains the parameters of primary interest, and

<ロト < 副 ト < 直 ト < 直 ト 三 2000 12/30

► *U_j*'s are regarded as nuisance parameters.

Likelihood factorisation (cont.)

The likelihood function is proportional to

$$\prod_{j} \frac{\exp(\sum_{i} y_{ij} \eta_{ij} + U_{j} t_{j})}{\prod_{i} \{1 + \exp(\eta_{ij} + U_{j})\}},$$

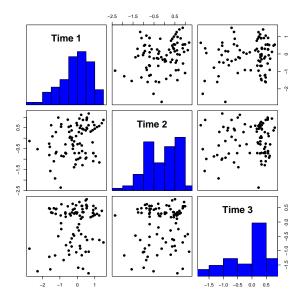
where $t_j = \sum_i y_{ij}$, and can be expressed as:

$$\prod_{j} \sum_{L} \frac{\exp\left\{\sum_{l} y_{lj} \eta_{ij} + U_{j} t_{j}\right\}}{\prod_{i} \left\{1 + \exp(\eta_{ij} + U_{j})\right\}} \prod_{j} \frac{\exp\left\{\sum_{i} y_{ij} \eta_{ij}\right\}}{\sum_{L} \exp\left\{\sum_{l} y_{lj} \eta_{ij}\right\}}$$
$$= \prod_{j} L_{M}(\boldsymbol{\phi}, U_{j}; t_{j}) \prod_{j} L_{C}(\boldsymbol{\phi}; y_{ij} | t_{j})$$

Statistical inference

- Statistical inference for *φ* based on ∏_j L_C(*φ*; y_{ij}|t_j) above is suitable because it does not make distributional assumptions about the subject-specific effects; however
- regression coefficients of covariates that do not change within cluster are non-identifiable.

- Therefore we adopt a random effects model, but
- we compare our results for the identifiable parameters.


Results

Different sets of regression parameters at each time period

Table: MLE of parameters from random effects model (i)

Para-	Time 1		Tir	Time 2		Time 3	
meters	Est.	SE	Est.	SE	Est.	SE	
Age eta	0.13	0.021	0.13	0.030	0.12	0.040	
Test δ_1	-1.29	0.13	-1.35	0.20	-1.066	6 0.31	
Gp δ_2	0.48	0.25	0.75	0.38	-0.018	0.51	
$T imes$ gp δ_{12}	0.42	0.19	-0.073	0.30	0.25	0.41	
Pr. ob. η_1	1.32	0.10	2.054	0.16	2.44	0.24	
S. ord. η_2	-0.044	0.011	-0.056	0.016	-0.080	0.024	
-2LogL:	-5672.1						

Estimated posterior modes of random effects

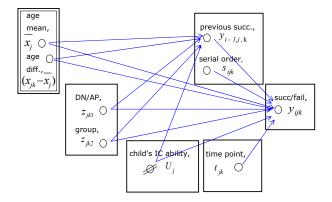
Separating between- and within-effects of covariates

- Neuhaus (2006) suggests to separate the effects of covariates in generalised linear mixed effects models in order to avoid a potential model misspecification.
- ► Note that separation of covariates into within- (W_{ij} W̄_j) and between- (W̄_j) components in the conditional likelihood L_C yields:

$$\frac{\exp\left\{\sum_{i} y_{ij} (W_{ij} - \bar{W}_{j})' \eta_{ij}\right\}}{\sum_{L} \exp\left\{\sum_{l} y_{lj} (W_{ij} - \bar{W}_{j})' \eta_{ij}\right\}}$$

<ロト < 副 ト < 臣 ト < 臣 ト 三 2000 17/30

 Thus the conditional approach only estimates withincomponents of covariates effects.

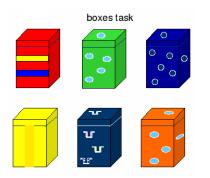

Results: Separating between- and within-cluster age effect

Common regression parameters at three time periods

Parameters	Model 1		Model 2	
	Estimate	SE	Estimate	SE
Age eta	0.12	0.016		
Age mean $eta_{f B}$			0.11	0.016
Age dif. $\beta_{\mathbf{W}}$			0.18	0.037
Test (DN vs. AP) δ_1	-1.083	0.098	-1.082	0.098
Group (2 vs. 1) δ_2	0.35	0.19	0.38	0.19
Prev. obs. η_1	2.05	0.075	2.05	0.075
Serial order η_2	-0.043	0.008	-0.043	0.008
Time (2 vs. 1) γ ₂	0.34	0.12	-0.031	0.23
Time (3 vs. 1) γ_3	0.52	0.21	-0.23	0.44
Test $ imes$ group $\delta_{\!12}$	0.21	0.14	0.21	0.14
-2Log-likelihood:	-5892.5		-5888.74	

Table: MLE of parameters from a random effects model (ii)

Graphical representation of results


Results in words

Maximum likelihood estimates of regression coefficients suggest:

- 1. A fatigue effect in the performance of a given child, as indicated by the negative effect associated to trial index $(\hat{\eta}_2 = -0.043, \, \text{se}(\hat{\eta}_2) = 0.008)$. In contrast,
- 2. a success in the previous trial increases the chances of success in subsequent trials ($\hat{\eta}_1 = 2.05$, se($\hat{\eta}_2$) = 0.075).
- 3. Children perform better at the AP task than at the DN task $(\hat{\delta}_1 = -1.082, \, \mathrm{se}(\hat{\delta}_1) = 0.098)$.
- 4. Children who took AP before DN task performed better than those who took the test in the reverse order $\hat{\delta}_2 = 0.38$, $se(\hat{\delta}_2) = 0.19$),

<ロト<回ト<三ト<三ト<三ト 20/30

Working memory

- stationary vs. scramble boxes
- sequences of succ/fail until retrieving 6 sweets
- 3 sessions 6 months apart

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

æ

27/36

Boxes tasks data

- ▶ Let Z_{jk} = (z_{ijk},..., z_{njjk}) fail/succ to retrieve a sweet in n_j trials at time period k
- Let S_{ijk} = 5 − ∑ⁱ_{l=1} z_{ljk} No. of sweets that remain to be retrieved at trial ith and time period k.
- We model $P_{ijk} = Pr(z_{ijk} = 1 | s_{ijk} = s)$, for $s = 1, \dots, 5$ as

$$logit(P_{ijk}) = \alpha_s + \boldsymbol{X}'_{ijk}\boldsymbol{\beta}_k + \gamma_k + U_j$$

<ロト<回ト<三ト<三ト<三ト 22/30

Statistical inference

The parameters of primary interest are the regression parameters and the subject-specific effects are regarded as nuisance parameters. Recall that $S_{ijk} = 5 - \sum_{l=1}^{i} z_{ljk}$. The likelihood function is:

$$L(\alpha_{s},\boldsymbol{\beta};\boldsymbol{Z}_{jk}) = \prod_{jk} \int \prod_{s\geq 1} \left\{ \left[\prod_{failures} (1-P_{ijk}) \right] P_{ijk} \right\} f(U_{j};\boldsymbol{\theta}) \mathrm{d}U_{j},$$

<ロト < 副 ト < 臣 ト < 臣 ト 三 23/30

where $f(U_j; \theta)$ is the density function of the latent variable U_j

Statistical inference (cont.)

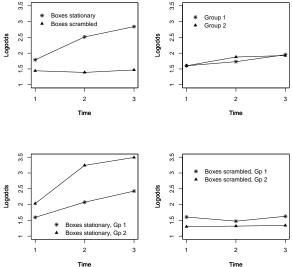
- As with the inhibitory control data we adopt a random– effects model, but we also compare results with a conditional likelihood approach.
- Similarly we investigate for within- and between-effects of age.

<ロト < 団 > < 臣 > < 臣 > 三 24/30

Table: MLE of parameters for boxes tasks data from a random effects model

Parameters	Estimate	SE
Age mean $eta_{f B}$	0.058	0.018
Age dif. β_{W}	0.044	0.049
Test (Scr vs. Sta) δ_1	-0.014	0.19
Group (2 vs. 1) δ_2	0.56	0.25
Time (2 vs. 1) γ_2	0.41	0.35
Time (3 vs. 1) γ_3	0.43	0.60
Test*group δ_{12}	-0.93	0.22
Time (2 vs. 1)*Test $\gamma_2\delta_1$	-0.75	0.28
Time (3 vs. 1)*Test $\gamma_3 \delta_1$	-1.017	0.30

・ロト・日本・モート・モーンの
・
25/30


-2Log-likelihood:-2170

Recall...

Test order at each time point

Week 1 Group 1: harder tasks Group 2: easier tasks Week 2 Group 1: easier tasks Group 2: harder tasks

Plots of overall logodds for boxes tasks data

・ロン ・四 ・ ・ ヨン ・ ヨン ・ ヨー

27/36

Impurity of boxes tests

- strong effect of order (of a different nature to that of IC tests)
- children who took the easy test version first, performed better at the stationary but not at scramble version

Concluding remarks

- We investigated how succ/fail in previous trials affect future performance,
- aggregates of succ/fail will loose information on the dynamics of the sequence.
- ► There is value in separating practice effects from age effects.
- Finally, we emphasize that testing order should not be ignored.

<ロト<回ト<三ト<三ト<三ト 29/30

References

Aalen, O., Fosen J., Weedon-Fekjær, H., Borgan, Ø., and Husebye E. (2004) Dynamic analysis of multivariate failure time data. *Biometrics* **60**, 764-773.

Neuhaus, J.M. and McCulloch, C.E. (2006) Separating betweenand within-cluster covariate effects by using conditional and partitioning methods. *JRSS* B **68** 859–872.

Shimmon, K. L. (2004). The development of executive control in young children and its relationship with mental-state understanding: a longitudinal study. Ph.D. Thesis, Lancaster University.