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Why combine data?

missing data adds complexity to Bayesian models for analysing
longitudinal studies

typically, they will include a number of sub-models, e.g.
model for the question of interest
model(s) to impute the missing values

the estimation of some parameters in the imputation models can
be difficult, particularly where information is limited

but, we can increase the amount of information by incorporating
data from other sources, e.g.

data from other studies
expert opinion

we now look at the general model set-up diagrammatically
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Schematic Diagram
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Millennium Cohort Study (MCS) example

MCS has 18,000+ cohort members born in the UK at the
beginning of the Millennium

using sweeps 1 and 2, our example predicts income for main
respondents meeting the criteria:

single in sweep 1
in work
not self-employed

motivating questions about income include:
how much extra do individuals earn if they have a degree?
does change in partnership status affect income?
does ethnicity affect rate of pay?
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Missingness in the MCS income dataset

initial dataset has 559 records

sweep 1 missingness
covariates

observed missing
pay observed 505 7

missing 43 4

restrict dataset to individuals fully observed in sweep 1

sweep 2 missingness for remaining 505 individuals
covariates

observed missing
pay observed 320 0

missing 19 166

don’t distinguish between item and sweep non-response

all the covariate missingness comes from sweep non-response
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Model of interest

we choose log of hourly net pay as our response

and 6 explanatory variables

Description of explanatory variables

short name description details
age continuousa

edu educational level 3 levels (1=none/NVQ1; 2=NVQ2/3; 3=NVQ4/5)b

eth ethnic group 2 levels (1=white; 2=non-white)
singc single/partner 2 levels (1=single; 2=partner)
reg region of country 2 levels (1=London; 2=other)
stratum ward type by countryd 9 levels
a centred and standardised
b the level of National Vocational Qualification (NVQ) equivalence of the individual’s highest academic or vocational edu-

cational qualification (level 3 has a degree)
c always single in sweep 1
d three strata for England (advantaged, disadvantaged and ethnic minority); two strata for Wales, Scotland and Northern

Ireland (advantaged and disadvantaged)
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Model of Interest: the equations

payit ∼ t4(µit , σ
2)

µit = αi + γs(i) +
p∑

k=1
βkxkit +

q∑
k=p+1

βkzki

αi ∼ N(0, ς2) individual random effects

ς ∼ N(0,100002)I(0, )

γs(i) ∼ N(0,100002) stratum specific intercepts

βk ∼ N(0,100002)

1
σ2 ∼ Gamma(0.001,0.001)

for t=1,2 sweeps; i=1,. . . ,n individuals;
x={age,edu,sing,reg}; z={eth}.
N(mean, variance)I(0, ) denotes a half Normal distribution restricted to positive values.
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Covariate model of missingness

assume covariates are missing at random (MAR)

stratum and eth do not change between sweeps

imputation of missing values for the other 4 covariates is required

age: impute age difference between sweeps and add to sweep 1
reg: assign sweep 1 value
sing: impute completely randomly to maintain proportion for
observed individuals
edu: impute using a latent variable with fixed cut points 0 and 1,
and conditions to prevent education level decreasing

ignore correlation between covariates for now, but this is
investigated as an extension

imputing edu is difficult because few individuals gain
qualifications between sweeps - additional data can help here
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Additional education data

additional data taken from a different longitudinal study, the 1970
British Cohort Study (BCS70)

we assemble education variables at similar time points to MCS
using sweeps

5 (1999/2000), cohort members aged 30
6 (2004/2005), cohort members aged 34

and select individuals with similar characteristics to MCS, i.e.
mother
single in sweep 5
in work
not self-employed

157 fully observed cohort members meet these criteria
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Combining the education data

we model BCS70 educational level using equations with the
same parameters as our equations for imputing edu

so the BCS70 data helps estimate these covariate missingness
model parameters

covariate
missingness

model
parameters

MCS
covariates

with
missingness

BCS70
education

data

MCS fully
observed
covariates

REST OF
MODEL
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edu Model of Missingness: the equations

mcs.eduF
i ∼ N(mcs.νi ,Σ

2)I(mcs.lefti ,mcs.righti ) latent variable

mcs.νi = η + κ2mcs.edui1,2 + κ3mcs.edui1,3 + φmcs.agei1

bcs.eduF
j ∼ N(bcs.νj ,Σ

2)I(bcs.leftj ,bcs.rightj ) latent variable

bcs.νj = η + κ2bcs.eduj1,2 + κ3bcs.eduj1,3 + φbcs.agej1

η, κ2, κ3, φ,Σ ∼ priors

N(mean, variance)I(left , right) denotes a restricted Normal distribution.

calculating left and right

observed edu2: −∞ 0 1 ∞
edu2 = 1 edu2 = 2 edu2 = 3

missing edu2:

−∞ 0 1 ∞

edu1 = 1
edu1 = 2

edu1 = 3
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Response model of missingness (selection model)

We use a logit model for response missingness, i.e.
mi ∼ Bernoulli(pi); logit(pi) =?,

where mi is a binary missingness indicator for sweep 2 pay, pay2

pay2 is Missing at Random (MAR) if pi depends only on
observed data, then

the logit equation does not include pay2

the response model of missingness and the rest of the model can
be estimated separately

otherwise pay2 is Missing not at Random (MNAR), then
we cannot ignore the model of missingness
the two parts of the model must be estimated simultaneously

we are interested in non-random missing data mechanisms
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Response missingness model parameters

the response missingness model parameters are known to be
difficult to estimate

there is limited information in a binary indicator of missingness
often resulting in a flat likelihood

we wish to incorporate expert knowledge to help with their
estimation

so, we recruited an expert with
general knowledge about missing data in longitudinal studies
specific knowledge about missing MCS family income
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Eliciting informative priors on parameters

we want informative priors for the response missingness model
parameters

but, these are difficult to elicit directly

instead
1 we elicit information about the probability of response

at design points
2 convert this to informative priors

we use Mary Kynn’s graphical elicitation package, ELICITOR
(silmaril.math.sci.qut.edu.au/∼whateley/)
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About ELICITOR

ELICITOR was created to elicit normal prior distributions for
Bayesian logistic regression models in ecology

The process of elicitation can be summarised as follows:
1 determine the variables to explain the income missingness
2 determine the category/level that maximises the response

probability for each variable
3 choose design points for any continuous variables
4 elicit median response probabilities and intervals
5 provide feedback and revisit elicited values as required
6 convert this information into informative priors

We now consider each step in more detail.
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Elicitation 1: determining explanatory variables

1 Following discussion with our expert, five variables were chosen

Explanatory variables for income missingness

name description
level level of hourly pay (sweep 1)
change change in hourly pay (sweep 2 - sweep 1)
sc social class (sweep 1)
eth ethnicity
ctry country

mi ∼ Bernoulli(pi); logit(pi) = θ +
p∑

k=1
δkxki

we wish to place informative priors on θ and δ

to illustrate the remaining steps we focus on change
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Elicitation 2/3: optimum values and design points

2 which value of change maximises the response probability?

our expert decided on £0

£0 is the optimum value for change

3 which other values of change should be used for elicitation
of response probability?

our expert chose -£5 and £5

-£5, £0 and £5 are the design points for change
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Elicitation 4: overall optimum value

4 the overall optimum value occurs when all 5 covariates are set to
their optimum values

first, elicit median: if
there were a 100
individuals with all
covariates at optimum
value, how many would
you expect to respond
to the income question?

then, elicit interval:
lower and upper
quartiles
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Elicitation 4: design points

4 each explanatory variable considered in turn
optimum value probabilities already elicited
remaining design points elicited assuming all other variables are
at optimum level

Example: change variable

determine suitable
functional form
piecewise linear
selected
each variable is
assumed independent,
so covariances are not
elicited
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Elicitation 5: feedback

5 providing feedback allows the expert to reconsider their
assessments

ELICITOR enables feedback during the elicitation and any
variable can be revisited
our expert wished to see the implied median response probability
when all the variables are set to their minimum design points, the
worst case, and believed this would be ≈ 60%

running the model produced a worst case median of 1%
our expert revisited his original elicited values
these changes resulted in a worst case response of 9%

our worst case is very extreme

the rate of response rapidly decreases as probabilities are
multiplied

giving good intuition about probabilities that are combined is difficult
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Elicitation 6: conversion

6 ELICITOR converted the elicited means and intervals into a
Bayesian model with informative priors

For illustration: the original elicitation with the single explanatory
variable, change, generates

logit(pi) = θ + Piecewise(changei)

Piecewise(changei) =

{
δ1changei : changei < 0
δ2changei : changei > 0

θ ∼ N(3,1.3)

δ1 ∼ N(0.15,0.23)

δ2 ∼ N(−0.32,0.32)
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Schematic Diagram
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Model Summary

Summary of Joint Models

Model BCS70 data Informative Functional
label included? priorsa formb

A Linear
B Piecewise Linear
C X Piecewise Linear
D X Piecewise Linear
E X X Piecewise Linear

a on the parameters of the response model of missingness
b of level and change in the response model of missingness

Convergence problems were encountered for model B
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Missing edu imputations

Posterior mean percentages using MCS data only (Model D)

edu2=1 edu2=2 edu2=3 total
edu1=1 83 17 0 100
edu1=2 96 4 100
edu1=3 100 100

Posterior mean percentages using MCS and BCS70 data (Model E)

edu2=1 edu2=2 edu2=3 total
edu1=1 82 18 0 100
edu1=2 95 5 100
edu1=3 100 100

Using the BCS70 data results in a slight increase in the percentage of
individuals imputed to increase their level of education
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Prior and posterior distributions of change parameter
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Estimates of model of interest parameters (95% interval)

linear selection model piecewise selection model
A C D E

edu[2] 1.17 (1.08,1.27) 1.17 (1.08,1.28) 1.18 (1.08,1.28) 1.18 (1.08,1.28)
edu[3] 1.37 (1.24,1.51) 1.35 (1.23,1.50) 1.35 (1.23,1.49) 1.36 (1.23,1.50)
eth 0.95 (0.83,1.08) 0.94 (0.83,1.07) 0.94 (0.83,1.07) 0.94 (0.82,1.07)
sing 0.88 (0.81,0.95) 0.93 (0.86,1.00) 0.93 (0.87,1.00) 0.93 (0.87,1.01)

parameters are eβ , representing the proportional increase in pay associated
with each covariate

the functional form of the selection model affects sing, but
otherwise these parameter estimates are similar for all models

higher education levels are associated with higher pay

being non-white or gaining a partner between sweeps is
associated with lower pay
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Comparison with complete case analysis

model of interest only linear selection model piecewise selection model
complete case analysis (CC) A E

edu[2] 1.17 (1.07,1.28) 1.17 (1.08,1.27) 1.18 (1.08,1.28)
edu[3] 1.41 (1.27,1.57) 1.37 (1.24,1.51) 1.36 (1.23,1.50)
eth 0.96 (0.84,1.11) 0.95 (0.83,1.08) 0.94 (0.82,1.07)
sing 0.93 (0.87,1.00) 0.88 (0.81,0.95) 0.93 (0.87,1.01)

parameters are eβ , representing the proportional increase in pay associated with
each covariate

our model of interest can be run separately if we restrict our
dataset to fully observed individuals - a complete case analysis

the CC edu[3] estimate is slightly higher than for both selection
models, but the other parameter estimates are similar to Model E

the extra information in the joint models has narrowed the 95%
intervals compared with CC, except for sing
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Summary

Modelling non-random missing data in longitudinal studies:
how can information from additional sources help?

by informing weakly or non-identifiable parts of the model

by allowing more realistic models to be fitted

by improving the imputations

by compensating for difficulties in separating different sources of
uncertainty, e.g. assumptions about the distributional form and
the missing data process

sensitivity analysis is crucial
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