◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Methodological developments for combining data Modelling non-random missing data in longitudinal studies: how can information from additional sources help?

#### Alexina Mason

#### Department of Epidemiology and Public Health Imperial College, London

#### July 2008

with thanks to Nicky Best, Ian Plewis and Sylvia Richardson

This work was supported by an ESRC PhD studentship.

# Outline



## **Motivation**

- introduction
- MCS income example

#### Building a Bayesian joint model which combines data 2

- model of interest
- covariate model of missingness
- response model of missingness



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Why combine data?

- missing data adds complexity to Bayesian models for analysing longitudinal studies
- typically, they will include a number of sub-models, e.g.
  - model for the question of interest
  - model(s) to impute the missing values
- the estimation of some parameters in the imputation models can be difficult, particularly where information is limited
- but, we can increase the amount of information by incorporating data from other sources, e.g.
  - data from other studies
  - expert opinion

we now look at the general model set-up diagrammatically

Building a Bayesian joint model which combines data

Results

Summary

# Schematic Diagram



◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Building a Bayesian joint model which combines data

Results

Summary



Building a Bayesian joint model which combines data

Results

Summary



Building a Bayesian joint model which combines data

Results

Summary



Building a Bayesian joint model which combines data

Results

Summary



Building a Bayesian joint model which combines data

Results

Summary



Motivation ○●○○ Building a Bayesian joint model which combines data

Results

Summary



Building a Bayesian joint model which combines data

Results

Summary



# Millennium Cohort Study (MCS) example

- MCS has 18,000+ cohort members born in the UK at the beginning of the Millennium
- using sweeps 1 and 2, our example predicts income for main respondents meeting the criteria:
  - single in sweep 1
  - in work
  - not self-employed
- motivating questions about income include:
  - how much extra do individuals earn if they have a degree?
  - does change in partnership status affect income?
  - o does ethnicity affect rate of pay?

# Missingness in the MCS income dataset

initial dataset has 559 records

|     |          | covariates       |   |  |
|-----|----------|------------------|---|--|
|     |          | observed missing |   |  |
| pay | observed | 505              | 7 |  |
|     | missing  | 43               | 4 |  |

#### sweep 1 missingness

restrict dataset to individuals fully observed in sweep 1

sweep 2 missingness for remaining 505 individuals

|     |          | covariates       |     |
|-----|----------|------------------|-----|
|     |          | observed missing |     |
| pay | observed | 320              | 0   |
|     | missing  | 19               | 166 |

- don't distinguish between item and sweep non-response
- all the covariate missingness comes from sweep non-response

Building a Bayesian joint model which combines data

Results

Summary

# Schematic Diagram



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

## Model of interest

- we choose log of hourly net pay as our response
- and 6 explanatory variables

#### Description of explanatory variables

| short name        | description                       | details                                                 |  |
|-------------------|-----------------------------------|---------------------------------------------------------|--|
| age               |                                   | continuous <sup>a</sup>                                 |  |
| edu               | educational level                 | 3 levels (1=none/NVQ1; 2=NVQ2/3; 3=NVQ4/5) <sup>b</sup> |  |
| eth               | ethnic group                      | 2 levels (1=white; 2=non-white)                         |  |
| sing <sup>c</sup> | single/partner                    | 2 levels (1=single; 2=partner)                          |  |
| reg               | region of country                 | 2 levels (1=London; 2=other)                            |  |
| stratum           | ward type by country <sup>d</sup> | 9 levels                                                |  |

a centred and standardised

<sup>b</sup> the level of National Vocational Qualification (NVQ) equivalence of the individual's highest academic or vocational educational qualification (level 3 has a degree)

c always single in sweep 1

<sup>d</sup> three strata for England (advantaged, disadvantaged and ethnic minority); two strata for Wales, Scotland and Northern Ireland (advantaged and disadvantaged)

Building a Bayesian joint model which combines data

Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Summary

### Model of Interest: the equations

$$pay_{it} \sim t4(\mu_{it}, \sigma^2)$$
$$\mu_{it} = \alpha_i + \gamma_{s(i)} + \sum_{k=1}^{p} \beta_k x_{kit} + \sum_{k=p+1}^{q} \beta_k z_{ki}$$

 $\alpha_i \sim N(0,\varsigma^2)$  individual random effects

 $\varsigma \sim \textit{N}(0, 10000^2)\textit{I}(0, )$ 

 $\gamma_{s(i)} \sim N(0, 10000^2)$  stratum specific intercepts

 $\beta_k \sim N(0, 10000^2)$ 

 $\frac{1}{\sigma^2} \sim Gamma(0.001, 0.001)$ 

for t=1,2 sweeps;  $i=1,\ldots,n$  individuals;

 $x = \{age, edu, sing, reg\}; z = \{eth\}.$ 

N(mean, variance) I(0,) denotes a half Normal distribution restricted to positive values.

Building a Bayesian joint model which combines data

Results

Summary



# Covariate model of missingness

- assume covariates are missing at random (MAR)
- *stratum* and *eth* do not change between sweeps
- imputation of missing values for the other 4 covariates is required
  - age: impute age difference between sweeps and add to sweep 1
  - reg: assign sweep 1 value
  - *sing*: impute completely randomly to maintain proportion for observed individuals
  - *edu*: impute using a latent variable with fixed cut points 0 and 1, and conditions to prevent education level decreasing
- ignore correlation between covariates for now, but this is investigated as an extension
- imputing edu is difficult because few individuals gain qualifications between sweeps - additional data can help here

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Additional education data

- additional data taken from a different longitudinal study, the 1970 British Cohort Study (BCS70)
- we assemble education variables at similar time points to MCS using sweeps
  - 5 (1999/2000), cohort members aged 30
  - 6 (2004/2005), cohort members aged 34
- and select individuals with similar characteristics to MCS, i.e.
  - mother
  - single in sweep 5
  - in work
  - not self-employed
- 157 fully observed cohort members meet these criteria

# Combining the education data

- we model BCS70 educational level using equations with the same parameters as our equations for imputing edu
- so the BCS70 data helps estimate these covariate missingness model parameters



## edu Model of Missingness: the equations

$$\begin{split} & \textit{mcs.edu}_{i}^{\bigstar} \sim \textit{N}(\textit{mcs.}\nu_{i}, \Sigma^{2})\textit{I}(\textit{mcs.left}_{i}, \textit{mcs.right}_{i}) & \text{latent variable} \\ & \textit{mcs.}\nu_{i} = \eta + \kappa_{2}\textit{mcs.edu}_{i1,2} + \kappa_{3}\textit{mcs.edu}_{i1,3} + \phi\textit{mcs.age}_{i1} \\ & \textit{bcs.edu}_{j}^{\bigstar} \sim \textit{N}(\textit{bcs.}\nu_{j}, \Sigma^{2})\textit{I}(\textit{bcs.left}_{j}, \textit{bcs.right}_{j}) & \text{latent variable} \\ & \textit{bcs.}\nu_{j} = \eta + \kappa_{2}\textit{bcs.edu}_{j1,2} + \kappa_{3}\textit{bcs.edu}_{j1,3} + \phi\textit{bcs.age}_{j1} \\ & \eta, \kappa_{2}, \kappa_{3}, \phi, \Sigma \sim \textit{priors} \\ & \textit{N}(\textit{mean, variance})\textit{I}(\textit{left, right}) \text{ denotes a restricted Normal distribution.} \\ & \text{calculating left and right} \end{split}$$

observed  $edu_2$ : missing  $edu_2$ :  $edu_1 = 1$   $edu_1 = 2$   $edu_1 = 3$   $edu_2 = 3$   $edu_2 = 3$   $edu_2 = 3$   $edu_1 = 1$   $edu_1 = 3$   $edu_1 = 3$   $edu_2 = 3$   $edu_2 = 3$   $edu_1 = 3$   $edu_2 = 3$   $edu_1 = 3$   $edu_2 = 3$   $edu_1 = 3$   $edu_2 = 3$   $edu_2 = 3$   $edu_1 = 3$   $edu_2 = 3$   $edu_3 = 3$  $edu_3$ 

Building a Bayesian joint model which combines data

Results

Summary



# Response model of missingness (selection model)

We use a logit model for response missingness, i.e.

 $m_i \sim Bernoulli(p_i); \ logit(p_i) =?,$ 

where  $m_i$  is a binary missingness indicator for sweep 2 pay,  $pay_2$ 

- *pay*<sub>2</sub> is Missing at Random (MAR) if *p<sub>i</sub>* depends only on observed data, then
  - the logit equation does not include pay<sub>2</sub>
  - the response model of missingness and the rest of the model can be estimated separately
- otherwise *pay*<sub>2</sub> is Missing not at Random (MNAR), then
  - we cannot ignore the model of missingness
  - the two parts of the model must be estimated simultaneously
- we are interested in non-random missing data mechanisms

#### Response missingness model parameters

- the response missingness model parameters are known to be difficult to estimate
  - there is limited information in a binary indicator of missingness
  - often resulting in a flat likelihood
- we wish to incorporate expert knowledge to help with their estimation
- so, we recruited an expert with
  - general knowledge about missing data in longitudinal studies
  - specific knowledge about missing MCS family income

# Eliciting informative priors on parameters

- we want informative priors for the response missingness model parameters
- but, these are difficult to elicit directly
- instead
  - we elicit information about the probability of response at design points
  - 2 convert this to informative priors
- we use Mary Kynn's graphical elicitation package, ELICITOR (silmaril.math.sci.qut.edu.au/~whateley/)

# About ELICITOR

- ELICITOR was created to elicit normal prior distributions for Bayesian logistic regression models in ecology
- The process of elicitation can be summarised as follows:
  - determine the variables to explain the income missingness
  - determine the category/level that maximises the response probability for each variable
  - Choose design points for any continuous variables
  - elicit median response probabilities and intervals
  - provide feedback and revisit elicited values as required
  - convert this information into informative priors

We now consider each step in more detail.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Elicitation 1: determining explanatory variables

Following discussion with our expert, five variables were chosen

Explanatory variables for income missingness

| name   | description                              |
|--------|------------------------------------------|
| level  | level of hourly pay (sweep 1)            |
| change | change in hourly pay (sweep 2 - sweep 1) |
| SC     | social class (sweep 1)                   |
| eth    | ethnicity                                |
| ctry   | country                                  |

- $m_i \sim Bernoulli(p_i); \ logit(p_i) = \theta + \sum_{k=1}^p \delta_k x_{ki}$
- we wish to place informative priors on heta and  $\delta$
- to illustrate the remaining steps we focus on change

2

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Elicitation 2/3: optimum values and design points

- which value of *change* maximises the response probability?
  - our expert decided on £0
- £0 is the optimum value for change
- which other values of *change* should be used for elicitation of response probability?
  - our expert chose -£5 and £5
  - -£5, £0 and £5 are the design points for change

# Elicitation 4: overall optimum value

- the overall optimum value occurs when all 5 covariates are set to their optimum values
  - first, elicit median: if there were a 100 individuals with all covariates at optimum value, how many would you expect to respond to the income question?
  - then, elicit interval: lower and upper quartiles



Building a Bayesian joint model which combines data

Results

Summary

# Elicitation 4: design points

- each explanatory variable considered in turn
  - optimum value probabilities already elicited
  - remaining design points elicited assuming all other variables are at optimum level

## Example: change variable

- determine suitable functional form
- piecewise linear selected
- each variable is assumed independent, so covariances are not elicited



## Elicitation 5: feedback

- providing feedback allows the expert to reconsider their assessments
  - ELICITOR enables feedback during the elicitation and any variable can be revisited
  - our expert wished to see the implied median response probability when all the variables are set to their minimum design points, the worst case, and believed this would be  $\approx 60\%$
  - running the model produced a worst case median of 1%
  - our expert revisited his original elicited values
  - these changes resulted in a worst case response of 9%
  - our worst case is very extreme
  - the rate of response rapidly decreases as probabilities are multiplied

#### giving good intuition about probabilities that are combined is difficult

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

### Elicitation 6: conversion

ELICITOR converted the elicited means and intervals into a Bayesian model with informative priors

For illustration: the original elicitation with the single explanatory variable, *change*, generates

 $\begin{array}{rcl} \textit{logit}(p_i) &=& \theta + \textit{Piecewise}(\textit{change}_i) \\ \textit{Piecewise}(\textit{change}_i) &=& \left\{ \begin{array}{ll} \delta_1\textit{change}_i : & \textit{change}_i < 0 \\ \delta_2\textit{change}_i : & \textit{change}_i > 0 \end{array} \right. \\ \theta &\sim& \textit{N}(3, 1.3) \\ \delta_1 &\sim& \textit{N}(0.15, 0.23) \\ \delta_2 &\sim& \textit{N}(-0.32, 0.32) \end{array} \right. \end{array}$ 

Building a Bayesian joint model which combines data

Results

Summary



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

# Model Summary

#### Summary of Joint Models

| Model | BCS70 data   | Informative         | Functional        |
|-------|--------------|---------------------|-------------------|
| label | included?    | priors <sup>a</sup> | form <sup>b</sup> |
| Α     |              |                     | Linear            |
| В     |              |                     | Piecewise Linear  |
| С     | $\checkmark$ |                     | Piecewise Linear  |
| D     |              | $\checkmark$        | Piecewise Linear  |
| Е     | $\checkmark$ | $\checkmark$        | Piecewise Linear  |

<sup>a</sup> on the parameters of the response model of missingness

<sup>b</sup> of *level* and *change* in the response model of missingness

Convergence problems were encountered for model B

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

# Missing edu imputations

Posterior mean percentages using MCS data only (Model D)

|        | edu2=1 | edu2=2 | edu2=3 | total |
|--------|--------|--------|--------|-------|
| edu1=1 | 83     | 17     | 0      | 100   |
| edu1=2 |        | 96     | 4      | 100   |
| edu1=3 |        |        | 100    | 100   |

Posterior mean percentages using MCS and BCS70 data (Model E)

|        | edu2=1 | edu2=2 | edu2=3 | total |
|--------|--------|--------|--------|-------|
| edu1=1 | 82     | 18     | 0      | 100   |
| edu1=2 |        | 95     | 5      | 100   |
| edu1=3 |        |        | 100    | 100   |

Using the BCS70 data results in a slight increase in the percentage of individuals imputed to increase their level of education

## Prior and posterior distributions of change parameter



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

#### Estimates of model of interest parameters (95% interval)

|        | linear selection model | piecewise selection model |                  |                  |
|--------|------------------------|---------------------------|------------------|------------------|
|        | A                      | С                         | D                | E                |
| edu[2] | 1.17 (1.08,1.27)       | 1.17 (1.08,1.28)          | 1.18 (1.08,1.28) | 1.18 (1.08,1.28) |
| edu[3] | 1.37 (1.24,1.51)       | 1.35 (1.23,1.50)          | 1.35 (1.23,1.49) | 1.36 (1.23,1.50) |
| eth    | 0.95 (0.83,1.08)       | 0.94 (0.83,1.07)          | 0.94 (0.83,1.07) | 0.94 (0.82,1.07) |
| sing   | 0.88 (0.81,0.95)       | 0.93 (0.86,1.00)          | 0.93 (0.87,1.00) | 0.93 (0.87,1.01) |

parameters are  $e^{\beta}$ , representing the proportional increase in pay associated with each covariate

- the functional form of the selection model affects *sing*, but otherwise these parameter estimates are similar for all models
- higher education levels are associated with higher pay
- being non-white or gaining a partner between sweeps is associated with lower pay

### Comparison with complete case analysis

|        | model of interest only      | linear selection model | piecewise selection model |
|--------|-----------------------------|------------------------|---------------------------|
|        | complete case analysis (CC) | А                      | E                         |
| edu[2] | 1.17 (1.07,1.28)            | 1.17 (1.08,1.27)       | 1.18 (1.08,1.28)          |
| edu[3] | 1.41 (1.27,1.57)            | 1.37 (1.24,1.51)       | 1.36 (1.23,1.50)          |
| eth    | 0.96 (0.84,1.11)            | 0.95 (0.83,1.08)       | 0.94 (0.82,1.07)          |
| sing   | 0.93 (0.87,1.00)            | 0.88 (0.81,0.95)       | 0.93 (0.87,1.01)          |

parameters are  $e^{\beta}$ , representing the proportional increase in pay associated with each covariate

- our model of interest can be run separately if we restrict our dataset to fully observed individuals - a complete case analysis
- the CC edu[3] estimate is slightly higher than for both selection models, but the other parameter estimates are similar to Model E
- the extra information in the joint models has narrowed the 95% intervals compared with CC, except for sing

(ロ) (同) (三) (三) (三) (三) (○) (○)

# Summary

Modelling non-random missing data in longitudinal studies: how can information from additional sources help?

- by informing weakly or non-identifiable parts of the model
- by allowing more realistic models to be fitted
- by improving the imputations
- by compensating for difficulties in separating different sources of uncertainty, e.g. assumptions about the distributional form and the missing data process

sensitivity analysis is crucial

#### **Relevant literature**

- The BIAS project. www.bias-project.org.uk/.
- Best, N. G., Spiegelhalter, D. J., Thomas, A., and Brayne, C. E. G. (1996).
  Bayesian Analysis of Realistically Complex Models.
  Journal of the Royal Statistical Society, Series A (Statistics in Society), 159, (2), 323–42.
- Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, (2nd edn). John Wiley and Sons.
- O'Hagan, A., Buck, C. E., Daneshkhah, A., Eiser, J. R., Garthwaite, P. H., Jenkinson, D. J., Jenkinson, D. J., Oakley, J. E., and Rakow, T. (2006). Uncertain Judgements: Eliciting Experts' Probabilities, (1st edn). John Wiley and Sons.
- Plewis, I. (2007). Non-Response in a Birth Cohort Study: The Case of the Millennium Cohort Study. International Journal of Social Research Methodology, 10, (5), 325–34.
- White, I. R., Carpenter, J., Evans, S., and Schroter, S. (2004).
  Eliciting and using expert opinions about dropout bias in randomised controlled trials.
  Technical report, London School of Hygiene and Tropical Medicine.