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Overview 

• Difference-in-differences (DiD) is a common approach to take to 
estimate the causal impact of a policy intervention, used frequently 
to exploit “natural experiments”   

• Recent literature suggests DiD designs can pose big problems for 
inference (researchers falsely concluding policies are having an 
effects) 

• Using Monte Carlo evidence, we show 

– controlling test size in DiD need not be big problem; key problem is low 
power 

– BC-FGLS combined with robust inference can help significantly 

 

 

 



What is the difference-in-differences approach?  

• A difference-in-differences (DiD) approach seeks to estimate 
causal impact of a policy intervention  

• Usually have:  

– a treatment group (individuals exposed to treatment) 

– a comparison group (individuals not exposed to treatment) 

• DiD usually used when: 

– we suspect untreated outcomes for treatment and comparison groups 
are different, even after matching (i.e. unconfoundedness does not 
hold; selection is on unobservables) 

– we have data from time when both groups are untreated  
• NB doesn’t have to be the same individuals; DiD is more general than using 

longitudinal data 
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The difference-in-difference estimator  

Outcome 
(treated or 
untreated) , 
conditional on 
observables 

time 

A 

B 

C 

D 

t-1 t Treatment 
begins 

Untreated outcome, 
untreated group 

Treated outcome, 
treated group 

Solution: use data from 
period when both 
groups untreated 

Untreated outcome, 
treated group 

Untreated outcome, 
untreated group 

Problem: matching (or 
equivalent) does not 
remove difference in 
untreated outcomes 



The difference-in-difference estimator  

Outcome 
(treated or 
untreated) , 
conditional on 
observables 

time 

A 

B 

C 

D 

t-1 t Treatment 
begins 

3. Calculate 
Estimated impact 

2. Assume 
difference 
constant over 
time; estimate 
non-treated 
outcome of 
treated at time t 

1. Estimate difference in 
untreated outcomes 
before anyone treated 

E 
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Generalise to many periods and many groups: 

 

 

 

(where c ≥ 2 indexes groups, t ≥ 2 indexes time, and        is indicator for 
treatment) 

 

Two non-standard error issues: 

1. errors may be correlated within group, e.g.   

2. errors may be serially correlated. 

 

These cause issues for inference as        also (perfectly) correlated within 
groups, and (highly) serially-correlated 

ict ct ict c t ictY T X uα β δ µ ξ= + + + + +

( | , , , ) 0ict ct ict c tE u T X µ ξ =

ict ct ictu η ε= +

ctT

ctT
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Convenient approach is the two-step: 

 A: Partial out individual-level controls by regressing on individual-
level controls and full set of group-time dummies 

 

 B.  Regress estimated group-time dummies       on group dummies, 
time dummies and treatment dummy 

 

 

Problem: how to do inference on      given serial correlation in error term 

 

( )( )ˆ ˆ
ct ct c t ct ct ctTλ α β µ ξ η λ λ= + + + + + −

ict ct ict c t ictY T X uα β δ µ ξ= + + + + +

ict ct ictu η ε= +

( | , , , ) 0ict ct ict c tE u T X µ ξ =

ĉtλ
ict ct ict ictY Xλ δ ε= + +

β
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1. “Cluster-robust” standard errors (CRSEs) 
Can take commonly-used formula for the covariance matrix that is robust 

to clustered errors of an arbitrary form (Liang and Zeger, 1986) 

 

 

– ...so if you cluster at the group level (not group-time level), you also 
allow for serial correlation within groups 

But consistency of CRSEs applies as # clusters gets large, and number of 
clusters in typical DiD applications can be small 

NB: 

– Common to scale residuals by sqrt(G/(G-1)) before plugging into CRSE 
formula. Exact theoretical validity only under special circumstances. 
Stata does this (almost). 

– We implement variant where we scale residuals AND compare resulting 
t-statistic to critical values from t(G-1) distribution (rather than N(0,1)). 
Stata does this with “regress”, but not other commands. 
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1
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2. FGLS 

 

 

• Hansen (2007) proposes FGLS estimation having assumed errors 
follow an auto-regressive (AR) process 

 

 

( )( )ˆ ˆ
ct ct c t ct ct ctTλ α β µ ξ η λ λ= + + + + + −



Aside: feasible GLS 

© Institute for Fiscal Studies   

( )( )
( ) ( )

1 1 2 2

1 1 2 2 1 2

1 1 2 2 1 1 2 2

1 1

In our case: 
ˆ

 with  serially uncorrelated
Consider transformed model:

ˆ ˆ ˆ 1

ct ct c t ct

ct ct ct ct ct

ct ct ct c

ct ct ct t t t

ct ct

T

T T T

λ α β µ ξ η
η ρη ρ η ε ε

λ ρ λ ρ λ α µ ρ ρ

β ρ ρ ξ ρ ξ ρ ξ

η ρη

− −

− −

− − − −

−

= + + + +
= + +

− − = + − −

+ − − + − −

+ − −( )

( )( )
( ) ( )

2 2

1 1 2 2

1 1 2 2 1 2

1 1 2 2 1 1 2 2

1 1

This allows OLS since:
 is serially uncorrelated

In practice, estimate OLS of:
ˆ ˆ ˆˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ

ˆ

ct

ct ct ct ct

ct ct ct c

ct ct ct t t t

ct ct

T T T

ρ η

η ρη ρ η ε

λ ρ λ ρ λ α µ ρ ρ

β ρ ρ ξ ρ ξ ρ ξ

η ρη

−

− −

− −

− − − −

−

− − =

− − = + − −

+ − − + − −

+ − −( )2 2ˆ ctρ η −



© Institute for Fiscal Studies   

2. FGLS 

 

 

• Hansen (2007) proposes FGLS estimation having assumed errors 
follow an auto-regressive (AR) process 

• Limitations: 

– Need an assumption on nature of serial correlation (as with all FGLS) 

– Estimate of AR parameter(s) biased because of fixed group effects and 
fixed T; Hansen derives a bias correction, but this is consistent as G goes 
to infinity (or becomes vanishingly small relative to T) 

• We implement Hansen’s method, but also implement variant where 
we allow for CRSEs even after FGLS has “removed” serial correlation 

 

 

 

( )( )ˆ ˆ
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1 1

1

ˆ ˆ ˆ ˆˆ ( ) ( )( )
C

BC FGLS ROBUST c c
c

V − −
− −

=

= ∑-1 -1 ' -1 ' -1
c c c cX'Ω X X Ω u u Ω X X'Ω X



© Institute for Fiscal Studies   

3. Wild cluster bootstrap-t 

• Cameron et al (2008) suggests calculating the t-statistic using 
(inconsistent-with-fixed-G) CRSEs, and then using a cluster version of 
the wild bootstrap (aka “block bootstrap) to get p-values 

 

• Implementation: 

i. repeatedly re-sample with replacement clusters (groups) of data, and re-
compute (inconsistent-with-fixed-G)  t-statistic each time 

ii. Compare original (inconsistent-with-fixed-G)  t-statistic to empirical 
distribution of (inconsistent-with-fixed-G)  t-statistics to get p-values  

 

• Note:  

– Resampling scheme at (i) imposes the null hypothesis 

– Method robust to arbitrary heteroscedasticity and serial correlation 
within groups/clusters 
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With Monte Carlo simulations we make these points: 

 

1. Test size is not the primary concern 

– Wild cluster bootstrap works in most cases, and CRSEs with t 
distribution works just as well, except where small fraction of G are 
(not) treated 

2. A more pressing problem is the low power of DiD to detect genuine 
effects 

3. BC-FGLS combined with robust inference can help a lot, especially 
with high T 
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Monte Carlo experiments 

• Use data on women’s log-earnings based on repeated cross-sections 
CPS (1979-2008), as in Bertrand et al (2004), Cameron et al (2008), 
Hansen (2007) 

• Collapse to state-year level using covariate-adjusted means 

• Repeat the following 15,000 times, varying G from 6 to 50: 

– Randomly choose G states with replacement 

– Randomly choose some (initially G/2) states to be ‘treated’ 

– Randomly choose a year from which ‘treated’ states will be treated 

– Estimate (non-existent) ‘treatment effect’ 

– Test (true) null of ‘no effect’ using nominal 5%-level test 

• Report how often null is rejected (over 15,000 replications) 

 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 
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Notes:  
 
* Indicates that rejection rate from 15,000 Monte Carlo replications is statistically significantly different from 0.05. 
 
Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and Mullainathan, except we 
use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in row 4 of Table 2 of that paper. 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.429* 0.424* 0.422* 0.413* 
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Notes:  
 
* Indicates that rejection rate from 15,000 Monte Carlo replications is statistically significantly different from 0.05. 
 
Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and Mullainathan, except we 
use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in row 4 of Table 2 of that paper. 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.429* 0.424* 0.422* 0.413* 

CRSE, N(0,1) critical vals 0.059* 0.073* 0.110* 0.175* 
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Notes:  
 
* Indicates that rejection rate from 15,000 Monte Carlo replications is statistically significantly different from 0.05. 
 
Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and Mullainathan, except we 
use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in row 4 of Table 2 of that paper. 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.429* 0.424* 0.422* 0.413* 

CRSE, N(0,1) critical vals 0.059* 0.073* 0.110* 0.175* 

CRSE*sqrt(G/(G-1)), tG-1 0.045 0.041* 0.042* 0.052 
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Notes:  
 
* Indicates that rejection rate from 15,000 Monte Carlo replications is statistically significantly different from 0.05. 
 
Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and Mullainathan, except we 
use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in row 4 of Table 2 of that paper. 



Rejection rates with tests of nominal 5% size, for 
‘placebo treatments’ with 30 years of CPS earnings data 

Number of groups  (US states), half of which are treated 

Inference method 50 20 10 6 

Assume iid 0.429* 0.424* 0.422* 0.413* 

CRSE, N(0,1) critical vals 0.059* 0.073* 0.110* 0.175* 

CRSE*sqrt(G/(G-1)), tG-1 0.045 0.041* 0.042* 0.052 

Wild cluster bootstrap-t 0.044 0.041* 0.048 0.059* 
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Notes:  
 
* Indicates that rejection rate from 15,000 Monte Carlo replications is statistically significantly different from 0.05. 
 
Uses sample of CPS data defined and aggregated to state-year level in same way as in Bertrand, Duflo and Mullainathan, except we 
use data from 1979 to 2009 (rather than 1999). Monte Carlos work in same way as in row 4 of Table 2 of that paper. 



But what about power? 
Number of groups  (US states), half of which are treated 

50 20 10 6 

Effect on log-earn = 0.02 

CRSE*sqrt(G/(G-1)), tG-1 

Wild cluster bootstrap-t 

Effect on log-earn = 0.05 

CRSE*sqrt(G/(G-1)), tG-1 

Wild cluster bootstrap-t 

Effect on log-earn = 0.10 

CRSE*sqrt(G/(G-1)), tG-1 

Wild cluster bootstrap-t 

Effect on log-earn = 0.15 

CRSE*sqrt(G/(G-1)), tG-1 

Wild cluster bootstrap-t 
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Note:  
Following Davidson and Mackinnon (1998), the nominal significance level used to determine whether to reject the null hypothesis is 
that which gives a test of true size 0.05. This nominal significance level is obtained from the 5th percentile of the empirical distribution 
of p-values from Monte Carlo simulations under a true null. 



But what about power? 
Number of groups  (US states), half of which are treated 

50 20 10 6 

Effect on log-earn = 0.02 

CRSE*sqrt(G/(G-1)), tG-1 0.238 

Wild cluster bootstrap-t 0.225 

Effect on log-earn = 0.05 

CRSE*sqrt(G/(G-1)), tG-1 0.822 

Wild cluster bootstrap-t 0.799 

Effect on log-earn = 0.10 

CRSE*sqrt(G/(G-1)), tG-1 1.000 

Wild cluster bootstrap-t 0.999 

Effect on log-earn = 0.15 

CRSE*sqrt(G/(G-1)), tG-1 1.000 

Wild cluster bootstrap-t 1.000 
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Note:  
Following Davidson and Mackinnon (1998), the nominal significance level used to determine whether to reject the null hypothesis is 
that which gives a test of true size 0.05. This nominal significance level is obtained from the 5th percentile of the empirical distribution 
of p-values from Monte Carlo simulations under a true null. 



But what about power? 
Number of groups  (US states), half of which are treated 

50 20 10 6 

Effect on log-earn = 0.02 

CRSE*sqrt(G/(G-1)), tG-1 0.238 0.134 

Wild cluster bootstrap-t 0.225 0.125 

Effect on log-earn = 0.05 

CRSE*sqrt(G/(G-1)), tG-1 0.822 0.513 

Wild cluster bootstrap-t 0.799 0.490 

Effect on log-earn = 0.10 

CRSE*sqrt(G/(G-1)), tG-1 1.000 0.919 

Wild cluster bootstrap-t 0.999 0.898 

Effect on log-earn = 0.15 

CRSE*sqrt(G/(G-1)), tG-1 1.000 0.995 

Wild cluster bootstrap-t 1.000 0.992 
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Note:  
Following Davidson and Mackinnon (1998), the nominal significance level used to determine whether to reject the null hypothesis is 
that which gives a test of true size 0.05. This nominal significance level is obtained from the 5th percentile of the empirical distribution 
of p-values from Monte Carlo simulations under a true null. 



But what about power? 
Number of groups  (US states), half of which are treated 

50 20 10 6 

Effect on log-earn = 0.02 

CRSE*sqrt(G/(G-1)), tG-1 0.238 0.134 0.088 0.074 

Wild cluster bootstrap-t 0.225 0.125 0.093 0.074 

Effect on log-earn = 0.05 

CRSE*sqrt(G/(G-1)), tG-1 0.822 0.513 0.273 0.168 

Wild cluster bootstrap-t 0.799 0.490 0.283 0.167 

Effect on log-earn = 0.10 

CRSE*sqrt(G/(G-1)), tG-1 1.000 0.919 0.718 0.448 

Wild cluster bootstrap-t 0.999 0.898 0.712 0.429 

Effect on log-earn = 0.15 

CRSE*sqrt(G/(G-1)), tG-1 1.000 0.995 0.904 0.755 

Wild cluster bootstrap-t 1.000 0.992 0.896 0.700 
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Note:  
Following Davidson and Mackinnon (1998), the nominal significance level used to determine whether to reject the null hypothesis is 
that which gives a test of true size 0.05. This nominal significance level is obtained from the 5th percentile of the empirical distribution 
of p-values from Monte Carlo simulations under a true null. 



Simulated time series of log(earnings) for treatments 
and controls, with 2% treatment effect on earnings 
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Simulated time series of log(earnings) for treatments 
and controls, with 2% treatment effect on earnings 

© Institute for Fiscal Studies   

-1 

-0.8 

-0.6 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1975 1980 1985 1990 1995 2000 2005 2010 

Lo
g

 e
ar

n
in

g
s 

Controls (3 states) 

Treatments (3 states, 2% effect) 

Treatment in 1992 
 



Increasing power using feasible GLS  
 

G=50 G=20 G=6 

No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points 

OLS, robust 0.045 0.041 0.052 

 FGLS 

 FGLS, robust 

BC-FGLS 

 BC-FGLS, robust 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). 



Increasing power using feasible GLS  
 

G=50 G=20 G=6 

No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points 

OLS, robust 0.045 0.041 0.052 

 FGLS 0.106 0.101 0.124 

 FGLS, robust 0.049 0.045 0.061 

BC-FGLS 

 BC-FGLS, robust 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). 



Increasing power using feasible GLS  
 

G=50 G=20 G=6 

No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points 

OLS, robust 0.045 0.041 0.052 

 FGLS 0.106 0.101 0.124 

 FGLS, robust 0.049 0.045 0.061 

BC-FGLS 0.073 0.070 0.096 

 BC-FGLS, robust 0.049 0.045 0.065 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). 



Increasing power using feasible GLS  
 

G=50 G=20 G=6 

No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points 

OLS, robust 0.045 0.810 0.041 0.467 0.052 0.168 

  

 FGLS, robust 0.049 0.957 0.045 0.670 0.061 0.255 

 BC-FGLS, robust 0.049 0.955 0.045 0.696 0.065 0.286 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). 



FGLS under misspecification of error process (10 groups) 
 Heterogeneous AR(2) MA(1) 

No effect 
Effect of +0.05 

log-points No effect 
Effect of +0.05 log-

points 

OLS, robust 0.041 0.536 0.052 0.597 

 FGLS, robust 0.055 0.703 0.053 0.580 

 BC-FGLS, robust 0.058 0.717 0.053 0.578 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). 
For the heterogeneous AR(2) process, the coefficient on the first lag (alpha) is drawn from a uniform distribution between zero and 
one for each state. The coefficient on the second lag is set equal to 0.5*min(alpha,1-alpha), which ensures stationarity. The MA(1) 
process has a lag parameter of 0.5. For both processes, the white noise is normally distributed. Its variance ensures that the error 
term has the same stationary variance as the log-earnings residuals in the CPS (0.04). 



FGLS with varying panel length (10 groups) 
 

T=30 T=20 T=10 

No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points 

OLS, robust 0.044 0.280 0.049 0.282 0.041 0.346 

 FGLS, robust 0.051 0.401 0.052 0.352 0.046 0.328 

 BC-FGLS, robust 0.054 0.419 0.055 0.367 0.046 0.327 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). 
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Summary and conclusions 

• Literature is right that DiD designs can pose problems for inference, 
but controlling test size need not be big problem; key problem is 
low power 

– We therefore recommend that researchers think seriously about the 
efficiency of DiD estimation (not just consistency and test size) 

 

• BC-FGLS combined with robust inference can help significantly, 
without compromising test size, even with few groups, with power 
gain over CRSEs increasing in T 

 

 



Spare 
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Earnings 

Time 

Training 
programme 
introduced 

Central DiD estimate 
says that training 
increased earnings….  
 

People in region with training programme 
People not in region with programme 
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Earnings 

Time 

Training 
programme 
introduced 

Central DiD estimate 
says that training 
increased earnings….  
 

…but we shouldn’t be 
confident about that if 
pre-treatment data 
look like this 

 

People in region with training programme 
People not in region with programme 

What would make data 
look like this?  
 
A region-specific economic 
shock.  
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Average 
earnings 

Time 

Training programme 
introduced 

People in region with training programme 

People in region without programme 

Is this an impact of training, or just a persistent 
coincident shock to earnings in the areas with 
treatment? 



Aside: GLS and feasible GLS 
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Justification: let  and error variance matrix 

Consider:  

This model meets standard conditions for OLS since  
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In our case: 
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Increasing power using feasible GLS  
 

G=50 G=20 G=6 

No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points 

OLS, robust 0.045 0.810 0.041 0.467 0.052 0.168 

 FGLS 0.106 0.985 0.101 0.799 0.124 0.434 

 FGLS, robust 0.049 0.957 0.045 0.670 0.061 0.255 

BC-FGLS 0.073 0.978 0.070 0.763 0.096 0.384 

 BC-FGLS, robust 0.049 0.955 0.045 0.696 0.065 0.286 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). 



FGLS under misspecification of error process (10 groups) 
 Heterogeneous AR(2) MA(1) 

No effect 
Effect of +0.05 

log-points No effect 
Effect of +0.05 log-

points 

OLS, robust 0.041 0.536 0.052 0.597 

 FGLS 0.100 0.775 0.088 0.675 

 FGLS, robust 0.055 0.703 0.053 0.580 

BC-FGLS 0.070 0.803 0.071 0.675 

 BC-FGLS, robust 0.058 0.717 0.053 0.578 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). 
For the heterogeneous AR(2) process, the coefficient on the first lag (alpha) is drawn from a uniform distribution between zero and 
one for each state. The coefficient on the second lag is set equal to 0.5*min(alpha,1-alpha), which ensures stationarity. The MA(1) 
process has a lag parameter of 0.5. For both processes, the white noise is normally distributed. Its variance ensures that the error 
term has the same stationary variance as the log-earnings residuals in the CPS (0.04). 



FGLS with varying panel length (10 groups) 
 

T=30 T=20 T=10 

No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points 

OLS, robust 0.044 0.280 0.049 0.282 0.041 0.346 

 FGLS 0.115 0.418 0.128 0.370 0.102 0.333 

 FGLS, robust 0.051 0.401 0.052 0.352 0.046 0.328 

BC-FGLS 0.084 0.420 0.093 0.376 0.087 0.337 

 BC-FGLS, robust 0.054 0.419 0.055 0.367 0.046 0.327 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). 



FGLS with varying panel length (10 groups) 
 

T=30 T=20 T=10 

No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points No effect 

Effect of 
+0.05 log-

points 

OLS, robust 0.044 0.280 0.049 0.282 0.041 0.346 

 FGLS 0.115 0.418 0.128 0.370 0.102 0.333 

 FGLS, robust 0.051 0.401 0.052 0.352 0.046 0.328 

BC-FGLS 0.084 0.420 0.093 0.376 0.087 0.337 

 BC-FGLS, robust 0.054 0.419 0.055 0.367 0.046 0.327 
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Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). 



Why does power decrease with T for OLS+CRSE? 

• Diff-in-Diff estimates the relative (ie between-group) difference in 
pre- and post-treatment averages 

• V[Diff] = V[Pre]+V[Post] – Cov[Pre,Post] 

• With serially correlated shocks, Cov[Pre, Post] important 

• As we add more years of data 

– V[Pre], V[Post] fall, decreasing V[Diff] 

– Cov[Pre, Post] falls, increasing V[Diff] 

• In these simulations, the second effect dominates 

– Similar phenomena apparent in Hansen’s (2007) simulations, but he 
does not discuss 
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