

Inference (and power) with difference-indifferences

Mike Brewer (Essex and IFS/PEPA) Thomas Crossley (Essex and IFS/PEPA) Robert Joyce (IFS/PEPA)

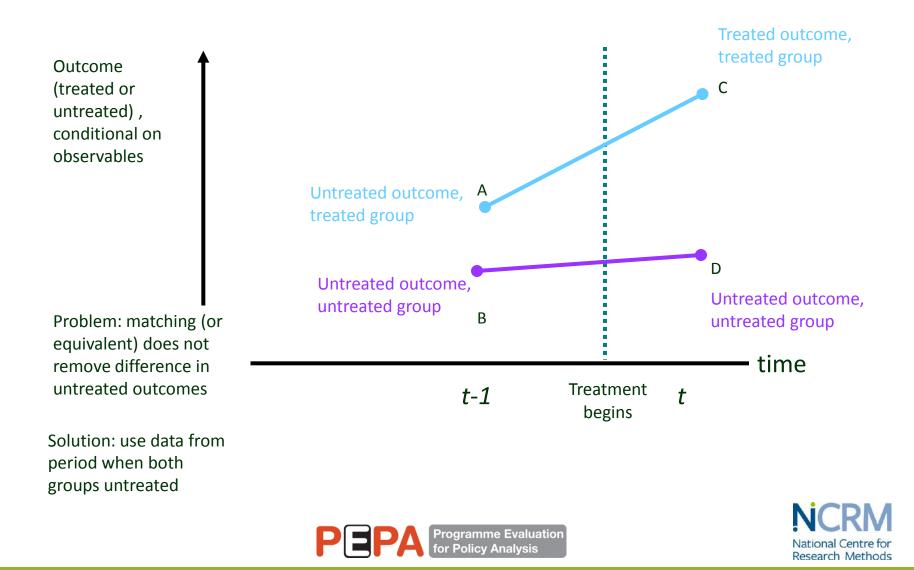
Overview

- Difference-in-differences (DiD) is a common approach to take to estimate the causal impact of a policy intervention, used frequently to exploit "natural experiments"
- Recent literature suggests DiD designs can pose big problems for inference (researchers falsely concluding policies are having an effects)
- Using Monte Carlo evidence, we show
 - controlling test size in DiD need not be big problem; key problem is low power
 - BC-FGLS combined with robust inference can help significantly

What is the difference-in-differences approach?

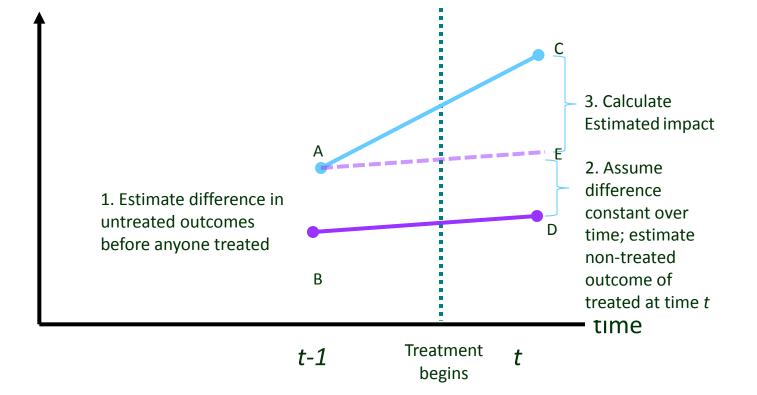
- A difference-in-differences (DiD) approach seeks to estimate causal impact of a policy intervention
- Usually have:
 - a treatment group (individuals exposed to treatment)
 - a comparison group (individuals not exposed to treatment)
- DiD usually used when:
 - we suspect untreated outcomes for treatment and comparison groups are different, even after matching (i.e. unconfoundedness does not hold; selection is on unobservables)
 - we have data from time when both groups are untreated
 - NB doesn't have to be the same individuals; DiD is more general than using longitudinal data

The difference-in-difference estimator



The difference-in-difference estimator

Outcome (treated or untreated), conditional on observables



Generalise to many periods and many groups:

$$Y_{ict} = \alpha + \beta T_{ct} + \delta X_{ict} + \mu_c + \xi_t + u_{ict}$$
$$E(u_{ict} \mid T_{ct}, X_{ict}, \mu_c, \xi_t) = 0$$

(where $c \ge 2$ indexes groups, $t \ge 2$ indexes time, and T_{ct} is indicator for treatment)

Two non-standard error issues:

- 1. errors may be correlated within group, e.g. $u_{ict} = \eta_{ct} + \varepsilon_{ict}$
- 2. errors may be serially correlated.

These cause issues for inference as T_{ct} also (perfectly) correlated within groups, and (highly) serially-correlated

$$Y_{ict} = \alpha + \beta T_{ct} + \delta X_{ict} + \mu_c + \xi_t + u_{ict}$$
$$E(u_{ict} \mid T_{ct}, X_{ict}, \mu_c, \xi_t) = 0$$
$$u_{ict} = \eta_{ct} + \varepsilon_{ict}$$

Convenient approach is the two-step:

A: Partial out individual-level controls by regressing on individuallevel controls and full set of group-time dummies

$$Y_{ict} = \lambda_{ct} + \delta X_{ict} + \varepsilon_{ict}$$

B. Regress estimated group-time dummies $\hat{\lambda}_{ct}$ on group dummies, time dummies and treatment dummy

$$\hat{\lambda}_{ct} = \alpha + \beta T_{ct} + \mu_c + \xi_t + \left(\eta_{ct} + \left(\hat{\lambda}_{ct} - \lambda_{ct}\right)\right)$$

Problem: how to do inference on β given serial correlation in error term

1. "Cluster-robust" standard errors (CRSEs)

Can take commonly-used formula for the covariance matrix that is robust to clustered errors of an arbitrary form (Liang and Zeger, 1986)

$$\hat{V}_{LZ} = (X'X)^{-1} (\sum_{c=1}^{C} X_{c} u_{c} u_{c} X_{c}) (X'X)^{-1}$$

- ...so if you cluster at the group level (*not* group-time level), you also allow for serial correlation within groups

But consistency of CRSEs applies as # clusters gets large, and number of clusters in typical DiD applications can be small

NB:

- Common to scale residuals by sqrt(G/(G-1)) before plugging into CRSE formula. Exact theoretical validity only under special circumstances.
 Stata does this (almost).
- We implement variant where we scale residuals AND compare resulting t-statistic to critical values from t(G-1) distribution (rather than N(0,1)).
 Stata does this with "regress", but not other commands.

2. FGLS

$$\hat{\lambda}_{ct} = \alpha + \beta T_{ct} + \mu_c + \xi_t + \left(\eta_{ct} + \left(\hat{\lambda}_{ct} - \lambda_{ct}\right)\right)$$

• Hansen (2007) proposes FGLS estimation having assumed errors follow an auto-regressive (AR) process

Aside: feasible GLS

In our case:

$$\hat{\lambda}_{ct} = \alpha + \beta T_{ct} + \mu_c + \xi_t + \eta_{ct}$$

 $\eta_{ct} = \rho_1 \eta_{ct-1} + \rho_2 \eta_{ct-2} + \varepsilon_{ct}$ with ε_{ct} serially uncorrelated

Consider transformed model:

$$\begin{aligned} \hat{\lambda}_{ct} - \rho_1 \hat{\lambda}_{ct-1} - \rho_2 \hat{\lambda}_{ct-2} &= (\alpha + \mu_c) (1 - \rho_1 - \rho_2) \\ &+ \beta (T_{ct} - \rho_1 T_{ct-1} - \rho_2 T_{ct-2}) + (\xi_t - \rho_1 \xi_{t-1} - \rho_2 \xi_{t-2}) \\ &+ (\eta_{ct} - \rho_1 \eta_{ct-1} - \rho_2 \eta_{ct-2}) \end{aligned}$$

This allows OLS since:

 $\eta_{ct} - \rho_1 \eta_{ct-1} - \rho_2 \eta_{ct-2} = \varepsilon_{ct}$ is serially uncorrelated In practice, estimate OLS of:

 $\hat{\lambda}_{ct} - \hat{\rho}_1 \hat{\lambda}_{ct-1} - \hat{\rho}_2 \hat{\lambda}_{ct-2} = (\alpha + \mu_c) (1 - \hat{\rho}_1 - \hat{\rho}_2) \\ + \beta (T_{ct} - \hat{\rho}_1 T_{ct-1} - \hat{\rho}_2 T_{ct-2}) + (\xi_t - \hat{\rho}_1 \xi_{t-1} - \hat{\rho}_2 \xi_{t-2})$

$$+ \left(\eta_{ct} - \hat{\rho}_1 \eta_{ct-1} - \hat{\rho}_2 \eta_{ct-2}\right)$$

2. FGLS

$$\hat{\lambda}_{ct} = \alpha + \beta T_{ct} + \mu_c + \xi_t + \left(\eta_{ct} + \left(\hat{\lambda}_{ct} - \lambda_{ct}\right)\right)$$

- Hansen (2007) proposes FGLS estimation having assumed errors follow an auto-regressive (AR) process
- Limitations:
 - Need an assumption on nature of serial correlation (as with all FGLS)
 - Estimate of AR parameter(s) biased because of fixed group effects and fixed *T*; Hansen derives a bias correction, but this is consistent as *G* goes to infinity (or becomes vanishingly small relative to *T*)
- We implement Hansen's method, but also implement variant where we allow for CRSEs even after FGLS has "removed" serial correlation

$$\hat{V}_{BC-FGLS-ROBUST} = (\mathbf{X'}\hat{\mathbf{\Omega}}^{-1}\mathbf{X})^{-1}(\sum_{c=1}^{C}\mathbf{X}_{c}\hat{\mathbf{\Omega}}_{c}^{-1}\mathbf{u}_{c}\mathbf{u}_{c}^{'}\hat{\mathbf{\Omega}}_{c}^{-1}\mathbf{X}_{c}^{'})(\mathbf{X'}\hat{\mathbf{\Omega}}^{-1}\mathbf{X})^{-1}$$

3. Wild cluster bootstrap-t

- Cameron et al (2008) suggests calculating the t-statistic using (inconsistent-with-fixed-*G*) CRSEs, and then using a cluster version of the wild bootstrap (aka "block bootstrap) to get p-values
- Implementation:
 - i. repeatedly re-sample with replacement clusters (groups) of data, and recompute (inconsistent-with-fixed-*G*) *t*-statistic each time
 - ii. Compare original (inconsistent-with-fixed-G) t-statistic to empirical distribution of (inconsistent-with-fixed-G) t-statistics to get *p*-values
- Note:
 - Resampling scheme at (i) imposes the null hypothesis
 - Method robust to arbitrary heteroscedasticity and serial correlation within groups/clusters

With Monte Carlo simulations we make these points:

- 1. Test size is not the primary concern
 - Wild cluster bootstrap works in most cases, and CRSEs with t distribution works just as well, except where small fraction of G are (not) treated
- 2. A more pressing problem is the low power of DiD to detect genuine effects
- 3. BC-FGLS combined with robust inference can help a lot, especially with high *T*

Monte Carlo experiments

- Use data on women's log-earnings based on repeated cross-sections CPS (1979-2008), as in Bertrand et al (2004), Cameron et al (2008), Hansen (2007)
- Collapse to state-year level using covariate-adjusted means
- Repeat the following 15,000 times, varying *G* from 6 to 50:
 - Randomly choose *G* states with replacement
 - Randomly choose some (initially G/2) states to be 'treated'
 - Randomly choose a year from which 'treated' states will be treated
 - Estimate (non-existent) 'treatment effect'
 - Test (true) null of 'no effect' using nominal 5%-level test
- Report how often null is rejected (over 15,000 replications)

	Number of groups (US states), half of which are treated						
Inference method	50	20	10	6			

Notes:

* Indicates that rejection rate from 15,000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
Inference method	50	20	10	6		
Assume iid	0.429*	0.424*	0.422*	0.413*		

Notes:

* Indicates that rejection rate from 15,000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated						
Inference method	50	20	10	6			
Assume iid	0.429*	0.424*	0.422*	0.413*			
CRSE, N(0,1) critical vals	0.059*	0.073*	0.110*	0.175*			

Notes:

* Indicates that rejection rate from 15,000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated						
Inference method	50 20 10 6						
Assume iid	0.429*	0.424*	0.422*	0.413*			
CRSE, N(0,1) critical vals	0.059*	0.073*	0.110*	0.175*			
CRSE*sqrt(G/(G-1)), t _{G-1}	0.045	0.041*	0.042*	0.052			

Notes:

* Indicates that rejection rate from 15,000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated						
Inference method	50	20	10	6			
Assume iid	0.429*	0.424*	0.422*	0.413*			
CRSE, N(0,1) critical vals	0.059*	0.073*	0.110*	0.175*			
CRSE*sqrt(G/(G-1)), t _{G-1}	0.045	0.041*	0.042*	0.052			
Wild cluster bootstrap-t	0.044	0.041*	0.048	0.059*			

Notes:

* Indicates that rejection rate from 15,000 Monte Carlo replications is statistically significantly different from 0.05.

	Number of groups (US states), half of which are treated					
	50	20	10	6		
Effect on log-earn = 0.02						
CRSE*sqrt(G/(G-1)), t _{G-1}						
Wild cluster bootstrap-t						
Effect on log-earn = 0.05						
CRSE*sqrt(G/(G-1)), t _{G-1}						
Wild cluster bootstrap-t						
Effect on log-earn = 0.10						
CRSE*sqrt(G/(G-1)), t _{G-1}						
Wild cluster bootstrap-t						
Effect on log-earn = 0.15						
CRSE*sqrt(G/(G-1)), t _{G-1}						
Wild cluster bootstrap-t						

Note:

Following Davidson and Mackinnon (1998), the nominal significance level used to determine whether to reject the null hypothesis is that which gives a test of true size 0.05. This nominal significance level is obtained from the 5th percentile of the empirical distribution of p-values from Monte Carlo simulations under a true null.

	Number of groups (US states), half of which are treated					
	50	20	10	6		
Effect on log-earn = 0.02						
CRSE*sqrt(G/(G-1)), t _{G-1}	0.238					
Wild cluster bootstrap-t	0.225					
Effect on log-earn = 0.05						
CRSE*sqrt(G/(G-1)), t _{G-1}	0.822					
Wild cluster bootstrap-t	0.799					
Effect on log-earn = 0.10						
CRSE*sqrt(G/(G-1)), t _{G-1}	1.000					
Wild cluster bootstrap-t	0.999					
Effect on log-earn = 0.15						
CRSE*sqrt(G/(G-1)), t _{G-1}	1.000					
Wild cluster bootstrap-t	1.000					

Note:

Following Davidson and Mackinnon (1998), the nominal significance level used to determine whether to reject the null hypothesis is that which gives a test of true size 0.05. This nominal significance level is obtained from the 5th percentile of the empirical distribution of p-values from Monte Carlo simulations under a true null.

National Centre for

Research Methods

	Number of groups (US states), half of which are treated						
	50	20	10	6			
Effect on log-earn = 0.02							
CRSE*sqrt(G/(G-1)), t _{G-1}	0.238	0.134					
Wild cluster bootstrap-t	0.225	0.125					
Effect on log-earn = 0.05							
CRSE*sqrt(G/(G-1)), t _{G-1}	0.822	0.513					
Wild cluster bootstrap-t	0.799	0.490					
Effect on log-earn = 0.10							
CRSE*sqrt(G/(G-1)), t _{G-1}	1.000	0.919					
Wild cluster bootstrap-t	0.999	0.898					
Effect on log-earn = 0.15							
CRSE*sqrt(G/(G-1)), t _{G-1}	1.000	0.995					
Wild cluster bootstrap-t	1.000	0.992					

Note:

Following Davidson and Mackinnon (1998), the nominal significance level used to determine whether to reject the null hypothesis is that which gives a test of true size 0.05. This nominal significance level is obtained from the 5th percentile of the empirical distribution of p-values from Monte Carlo simulations under a true null.

National Centre for

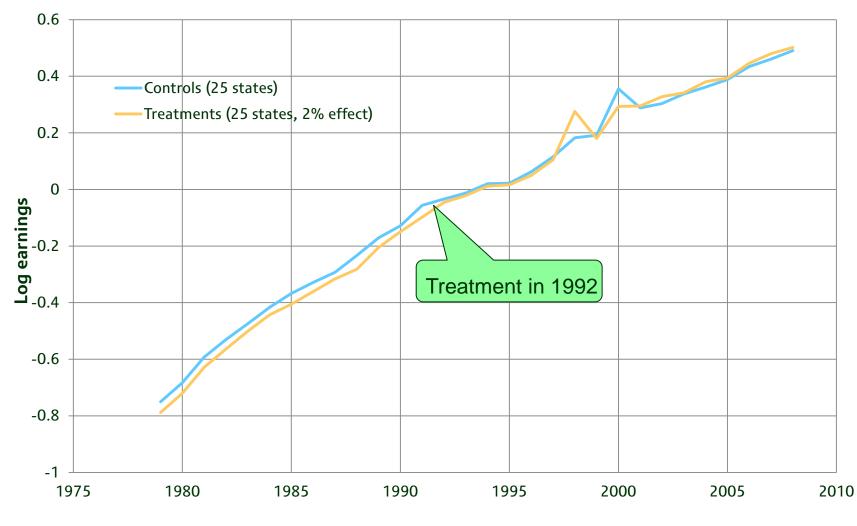
Research Methods

	Number of groups (US states), half of which are treated						
	50	20	10	6			
Effect on log-earn = 0.02							
CRSE*sqrt(G/(G-1)), t _{G-1}	0.238	0.134	0.088	0.074			
Wild cluster bootstrap-t	0.225	0.125	0.093	0.074			
Effect on log-earn = 0.05							
CRSE*sqrt(G/(G-1)), t _{G-1}	0.822	0.513	0.273	0.168			
Wild cluster bootstrap-t	0.799	0.490	0.283	0.167			
Effect on log-earn = 0.10							
CRSE*sqrt(G/(G-1)), t _{G-1}	1.000	0.919	0.718	0.448			
Wild cluster bootstrap-t	0.999	0.898	0.712	0.429			
Effect on log-earn = 0.15							
CRSE*sqrt(G/(G-1)), t _{G-1}	1.000	0.995	0.904	0.755			
Wild cluster bootstrap-t	1.000	0.992	0.896	0.700			

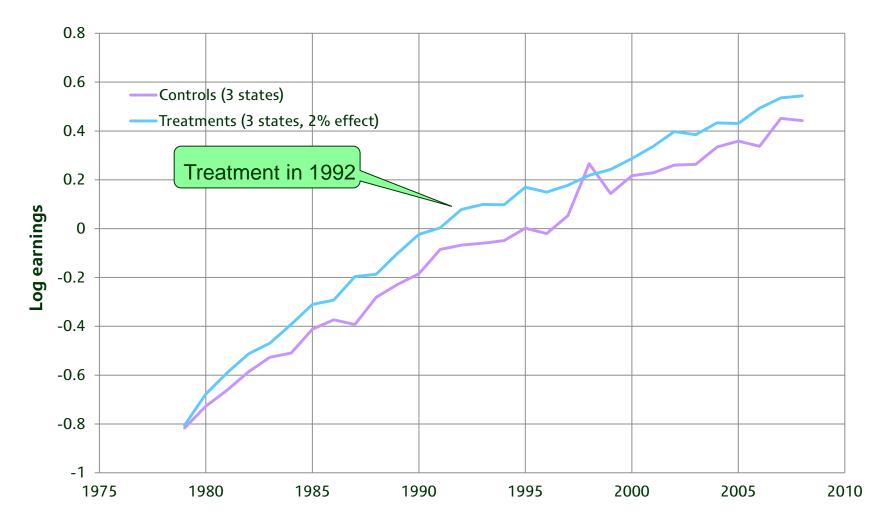
Note:

Following Davidson and Mackinnon (1998), the nominal significance level used to determine whether to reject the null hypothesis is that which gives a test of true size 0.05. This nominal significance level is obtained from the 5th percentile of the empirical distribution of p-values from Monte Carlo simulations under a true null.

Simulated time series of log(earnings) for treatments and controls, with 2% treatment effect on earnings



Simulated time series of log(earnings) for treatments and controls, with 2% treatment effect on earnings



	G=50		G=	20	G=6	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.045		0.041		0.052	
FGLS						
FGLS, robust						
BC-FGLS						
BC-FGLS, robust						

	G=50		G=	20	G=6	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.045		0.041		0.052	
FGLS	0.106		0.101		0.124	
FGLS, robust	0.049		0.045		0.061	
BC-FGLS						
BC-FGLS, robust						

	G=50		G=20		G=6	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.045		0.041		0.052	
FGLS	0.106		0.101		0.124	
FGLS, robust	0.049		0.045		0.061	
BC-FGLS	0.073		0.070		0.096	
BC-FGLS, robust	0.049		0.045		0.065	

	G=50		G=20		G=6	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.045	0.810	0.041	0.467	0.052	0.168
FGLS, robust	0.049	0.957	0.045	0.670	0.061	0.255
BC-FGLS, robust	0.049	0.955	0.045	0.696	0.065	0.286

FGLS under misspecification of error process (10 groups)

	Heterogen	eous AR(2)	MA(1)		
	No effect	Effect of +0.05 log-points	No effect	Effect of +0.05 log- points	
OLS, robust	0.041	0.536	0.052	0.597	
FGLS, robust	0.055	0.703	0.053	0.580	
BC-FGLS, robust	0.058	0.717	0.053	0.578	

Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). For the heterogeneous AR(2) process, the coefficient on the first lag (alpha) is drawn from a uniform distribution between zero and one for each state. The coefficient on the second lag is set equal to 0.5*min(alpha,1-alpha), which ensures stationarity. The MA(1) process has a lag parameter of 0.5. For both processes, the white noise is normally distributed. Its variance ensures that the error term has the same stationary variance as the log-earnings residuals in the CPS (0.04).

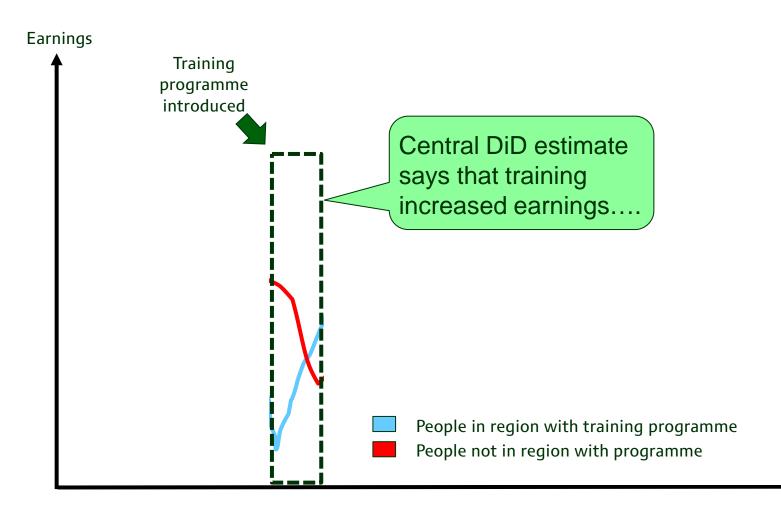
FGLS with varying panel length (10 groups)

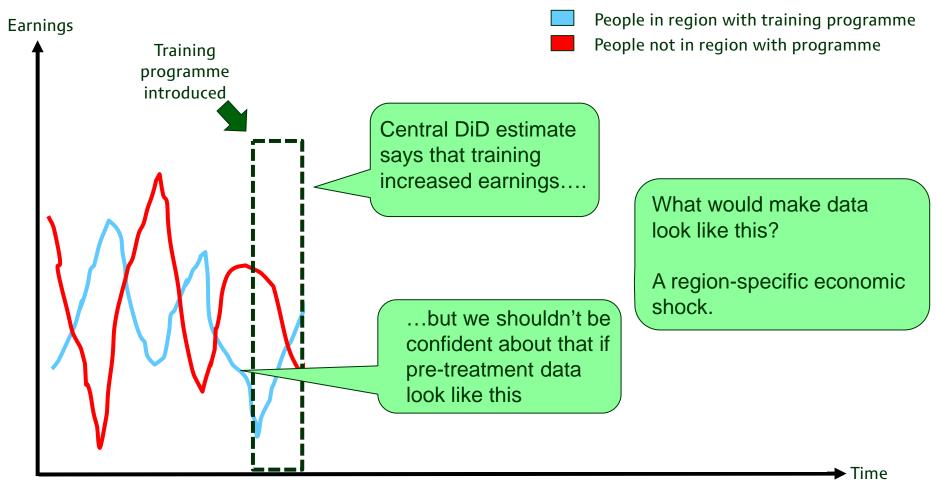
	T=30		T=20		T=10	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.044	0.280	0.049	0.282	0.041	0.346
FGLS, robust	0.051	0.401	0.052	0.352	0.046	0.328
BC-FGLS, robust	0.054	0.419	0.055	0.367	0.046	0.327

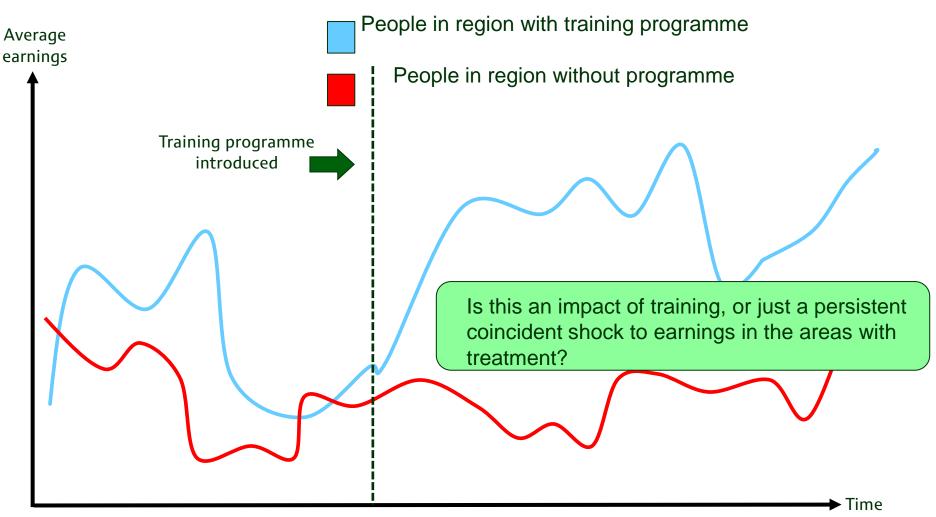
Summary and conclusions

- Literature is right that DiD designs can pose problems for inference, but controlling test size need not be big problem; key problem is low power
 - We therefore recommend that researchers think seriously about the efficiency of DiD estimation (not just consistency and test size)
- BC-FGLS combined with robust inference can help significantly, *without* compromising test size, even with *few groups*, with power gain over CRSEs increasing in *T*

Spare







Aside: GLS and feasible GLS

Justification: let $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$ and error variance matrix $\boldsymbol{\Omega} \neq \sigma^2 \mathbf{I}$ Consider: $(\boldsymbol{\Omega}^{-1/2}\mathbf{y}) = (\boldsymbol{\Omega}^{-1/2}\mathbf{X})\boldsymbol{\beta} + (\boldsymbol{\Omega}^{-1/2}\mathbf{u})$

This model meets standard conditions for OLS since $Var(\Omega^{-1/2}\mathbf{u}) = \mathbf{I}$

$$\hat{\boldsymbol{\beta}}_{_{GLS}} = \left(\mathbf{X}'\boldsymbol{\Omega}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}'\boldsymbol{\Omega}^{-1}\mathbf{y} \text{, where error variance matrix } \boldsymbol{\Omega} \neq \sigma^{2}\mathbf{I}$$
$$\hat{\boldsymbol{\beta}}_{_{FGLS}} = \left(\mathbf{X}'\boldsymbol{\Omega}^{-1}\mathbf{X}\right)^{-1}\mathbf{X}'\boldsymbol{\Omega}^{-1}\mathbf{y} \text{, where } \boldsymbol{\Omega} \text{ estimates unknown error variance matrix } \boldsymbol{\Omega} \neq \sigma^{2}\mathbf{I}$$

In our case:

$$\hat{\lambda}_{ct} = \alpha + \beta T_{ct} + \mu_c + \xi_t + \eta_{ct}$$

$$\eta_{ct} = \rho_1 \eta_{ct-1} + \rho_1 \eta_{ct-2} + \varepsilon_{ct} \text{ with } \varepsilon_{ct} \text{ serially uncorrelated}$$

Consider transformed model:

$$\begin{aligned} \hat{\lambda}_{ct} - \rho_1 \hat{\lambda}_{ct-1} - \rho_2 \hat{\lambda}_{ct-2} &= (\alpha + \mu_c) (1 - \rho_1 - \rho_2) \\ &+ \beta (T_{ct} - \rho_1 T_{ct-1} - \rho_2 T_{ct-2}) + (\xi_t - \rho_1 \xi_{t-1} - \rho_2 \xi_{t-2}) \\ &+ (\eta_{ct} - \rho_1 \eta_{ct-1} - \rho_2 \eta_{ct-2}) \end{aligned}$$

This allows OLS since:

$$\eta_{ct} - \rho_1 \eta_{ct-1} - \rho_2 \eta_{ct-2} = \varepsilon_{ct}$$

	G=50		G=20		G=6	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.045	0.810	0.041	0.467	0.052	0.168
FGLS	0.106	0.985	0.101	0.799	0.124	0.434
FGLS, robust	0.049	0.957	0.045	0.670	0.061	0.255
BC-FGLS	0.073	0.978	0.070	0.763	0.096	0.384
BC-FGLS, robust	0.049	0.955	0.045	0.696	0.065	0.286

FGLS under misspecification of error process (10 groups)

	Heterogen	eous AR(2)	MA(1)		
	No effect	Effect of +0.05 log-points	No effect	Effect of +0.05 log- points	
OLS, robust	0.041	0.536	0.052	0.597	
FGLS	0.100	0.775	0.088	0.675	
FGLS, robust	0.055	0.703	0.053	0.580	
BC-FGLS	0.070	0.803	0.071	0.675	
BC-FGLS, robust	0.058	0.717	0.053	0.578	

Note: FGLS is implemented assuming an AR(2) process for the state-time shocks. For the BC-FGLS procedure, see Hansen (2007). For the heterogeneous AR(2) process, the coefficient on the first lag (alpha) is drawn from a uniform distribution between zero and one for each state. The coefficient on the second lag is set equal to 0.5*min(alpha,1-alpha), which ensures stationarity. The MA(1) process has a lag parameter of 0.5. For both processes, the white noise is normally distributed. Its variance ensures that the error term has the same stationary variance as the log-earnings residuals in the CPS (0.04).

FGLS with varying panel length (10 groups)

	T=30		T=20		T=10	
	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.044	0.280	0.049	0.282	0.041	0.346
FGLS	0.115	0.418	0.128	0.370	0.102	0.333
FGLS, robust	0.051	0.401	0.052	0.352	0.046	0.328
BC-FGLS	0.084	0.420	0.093	0.376	0.087	0.337
BC-FGLS, robust	0.054	0.419	0.055	0.367	0.046	0.327

FGLS with varying panel length (10 groups)

	T=30		T=20		T=10	
	No effect	Effect of +0.05 log- points		Effect of +0.05 log- points	No effect	Effect of +0.05 log- points
OLS, robust	0.044	0.280	0.049	0.282	0.041	0.346
FGLS	0.115	0.418	0.128	0.370	0.102	0.333
FGLS, robust	0.051	0.401	0.052	0.352	0.046	0.328
BC-FGLS	0.084	0.420	0.093	0.376	0.087	0.337
BC-FGLS, robust	0.054	0.419	0.055	0.367	0.046	0.327

Why does power decrease with *T* for OLS+CRSE?

- Diff-in-Diff estimates the relative (ie between-group) difference in pre- and post-treatment averages
- V[Diff] = V[Pre]+V[Post] Cov[Pre,Post]
- With serially correlated shocks, Cov[Pre, Post] important
- As we add more years of data
 - V[Pre], V[Post] fall, decreasing V[Diff]
 - Cov[Pre, Post] falls, increasing V[Diff]
- In these simulations, the second effect dominates
 - Similar phenomena apparent in Hansen's (2007) simulations, but he does not discuss

