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Abstract: 
As a bivariate and multivariate multidimensional exploratory method, simple and 
multiple correspondence analyses have been used successfully in social science for 
survey or questionnaire results descriptions. Nonetheless, the complexity of social 
interactions including health status indicators, with also the need to take into 
account the spatial and temporal realm of the survey, may incline to look at variable 
associations in a multiway approach instead of a two-way matrix analysis. This 
means for example, that interaction of order three between the spatial configuration 
(say the Output Areas of an urban zone), the set of categorical variables (say 
selected from a census survey) and the evolution (say every 5 years over a 30 years 
period) would be considered in order to differentiate spatio-temporal associations 
across categorical variables.  For census-based spatial simulation models such as 
microsimulations, exhibiting this kind of properties is useful as forecasts moves of 
population characteristics to be considered for healthcare policy scenario analysis. In 
this paper it is shown how to run this type of analysis within R using a package 
dedicated to multiway analysis (the R package PTAk), that is, working on multi-entry 
array data using an algorithm extending classical multidimensional analysis. A 
didactic approach from two-way analyses to multiway ones, of the same dataset 
generated from a population spatial simulation model allows a critical 
demonstration of the potential of the different t methods. Particular attention is also 
given to the different choices of spatial units and the scale variation effect within a 
nested administrative zoning system that can be analysed by a correspondence 
analysis with respect to a model (extending the approach using the independence 
model) and which can be done for a simple, multiple of multiway correspondence 
analysis. 
 
Keywords: microsimulation, population simulation, census data, health indicators, 
spatial units, correspondence analysis, multiway analysis, data reduction methods, 
multi-entries arrays, tensor, R 
 
1 Introduction 
 
Factorial Correspondence Analysis (FCA) allows breaking down, in a 
multidimensional analysis way, the residual to the probabilistic independence for the 
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joint distribution of two categorical variables. Statistical properties of this method, 
linked to some matrix algebra properties, leads naturally to extend it to more than 
two qualitative variables with the Multiple Correspondence Analysis (MCA) 
decomposing a statistic expressing all pairwise residuals from independence (see 
Lebart et al. (1984) or Murtagh (2007) for a more matrix algebra exposé, Le Roux and 
Rouanet 2010 for historical point of view and a geometrical focused approach). 
Therefore, associations of variable categories measured from a population survey, 
highlighted from the matrix decomposition as contributing to large residuals, are 
depicted, described and interpreted within a socio-demographic analysis of the 
“clouds” of points (individuals and categories) (Le Roux and Rouanet, 2008). In social 
sciences and other disciplines dealing with contingency tables analysis such as 
coming from surveys and questionnaires, MCA has been very successful as a tool to 
explore potential variable associations and generate hypothesis as well as capturing 
and summarising dimensions (also called scores, indices, factor scales) of a social, 
demographic or behavioural domain and in other population survey sciences (e.g., 
Savage, 2010, Le Roux and Rouanet 2008, Gatrell et al. 2004).  
 
Complex interaction can be revealed using this method but only implicitly from a list 
and pairwise interactions, and after a purely theoretical interpretation from external 
sources related to the studied domain. In other words if a three-way interaction of 
categorical variables is to be analysed, the method to perform this has to be based 
on analysing the joint distribution of the three variables involved: a three-way 
entries contingency table. This is further called a multiway approach and each entry 
of the multiway table is called a mode. Multiway approaches are obvious 
approaches when a repetition is part of the design of the study. For example a 
spatio-temporal survey study (longitudinal study with a geographical anchor) in 
which answers to a questionnaire at regular time interval are collected over a 
spatially sampled population over a certain period, can be summarised in a table of 
counts with three entries: the spatial mode made of one variable identifying the 
spatial unit, the item mode identifying the categories of each variable and the time 
mode identifying the date or sub-period. More entries can be considered if cross-
tables with one or more categorical variables are chosen, so that a mode can be 
semantically describing a particular sub-domain, sub-scale, aspect present in the list 
of variables measured.  If multiway approaches can be useful to exhibit a complex 
interaction, higher than second order, the limitations are dictated by sample size (to 
get potentially enough observations for each combination of categories of crossed 
variables) and presence of structural zeros (i.e., either impossible or very unlikely 
combinations of categories of different variables, e.g., an occupation typically found 
in young females will generate a bunch of zeros if the variable is crossed with age 
and then crossed with sex (to get a occupation x age x sex table). 
 
 
Correspondence analysis can be used for any type of studies with categorical 
variables, the focus in this paper will be given to spatial microsimulation population 
studies derived from census data. In order to be used for policy scenario analysis, the 
spatio-temporal variation of associations is the main interest in these types of 
studies as well as the potential interference of the choice of spatial units. The natural 
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spatial evolution of the population, or its aspects under a “what if” scenario, are 
urban forecasts needed as the basis for policy decision-making (Birkin and Clarke 
2011).  
The MoSeS dynamic MSM is providing data for the analysis and illustration of 
potential methods to further analyse MSM results in general; the features of this 
simulation are described next.  Starting from a situation in which demographic 
attributes are assumed to vary simultaneously, it will be shown how this null model 
can be refined using the methodology of correspondence analysis.  Many statistical 
software have inbuilt functionalities to perform correspondence analysis or very 
similar methods multidimensional methods (e.g., SPSS, SAS, MiniTab, R): ca (Nenadic 
and Greenacre, 2007), ade4 (Dray and Dufour, 2007) to name a few packages within 
the R software (R Development Core Team 2009). 
 
The paper aims at illustrating the multiway approach in progressing from simple and 
multiple correspondence analysis whilst using practical hands on R coding to use. 
Factorial Correspondence Analysis on k-modes tables (FCAk) (Leibovici and El 
Maâche 1997,) has been proposed as a potential multiway extension of the FCA 
when considering k>2 categorical variables. The R package PTAk enables the FCAk to 
be computed among other multiway methods (last version of the package is 
described in Leibovici 2010). 
 
 
 
2 Spatial microsimulation and MoSes 
 
The technique of microsimulation (MSM) is well-established as an approach to 
econometric evaluation and policy analysis (Orcutt, 1957).  The essence of MSM is 
the representation of populations (e.g. of customers or economic agents) as lists of 
individuals rather than an array of the counts of different group members.  In this 
way the full variety of the population can be captured effectively (Birkin and M. 
Clarke, 2011), which is particularly important in geographical contexts in which 
spatial differentiation is an important consideration; and particularly so when some 
element of spatial interaction between areas renders demographic arrays to be 
explosively large (see for example, van Imhoff and Post, 1998).  Hence spatial 
microsimulation has become a popular mechanism for the analysis of all kinds of 
socio-demographic problems in a geographical context, ranging from healthcare 
(Smith et al, 2006, Procter et al, 2008) to labour markets (Ballas and Clarke, 2000), 
poverty (Tanton et al, 2009) to retail (Birkin and Clarke, 1987; Nakaya et al, 2007). 
 
Whilst MSM are of interest as analytical and synthetic estimation tools, a particularly 
important sub-class of approaches are dynamic MSM, in which individual 
representations are used as a powerful basis for demographic projection.  Methods 
include comparative static approaches in which updated populations are synthesised 
from marginal counts (Ballas et al, 2005) and models which estimate the time 
between changes in demographic states e.g. associated with fertility, illness, 
mortality or migration (‘event-based models’, e.g. DynaCan – see Statistics Canada, 
2009) as well as transition-oriented approaches such as the MoSeS model which is 
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discussed further below, and in which the probability of evolution between states is 
evaluated across discrete time periods. 
An important feature of dynamic microsimulation models is their capacity to 
generate extremely large and rich datasets.  Consider for example a demographic 
model of the city of Leeds in which the population is segmented into 2,439 
geographical neighbourhoods, 30 time periods and 10 characteristics, each with six 
attribute categories (see below).  The number of potential elements in this 
simulation is the order of 4 million (i.e. 2,439 x 30 x 10 x 6).  There is an analytical 
requirement to identify patterns in this data set for a number of reasons.  First, one 
might wish to locate key trends in space and time – for example, where is the impact 
of demographic ageing most significant, and when do these trends begin to 
accelerate dramatically?  Secondly, forensic investigation can support tests and 
demonstrations of the robustness of the underlying models – where are the 
anomalies, outliers and unusual cases, and how can these be explained and 
rationalised?  Thirdly, when the purpose of simulation is to inform policy appraisal or 
‘what if?’ experiments (as will often be the case) then it may be useful to explore 
whether different interventions lead to pronounced or significant changes in the 
distribution of an outcome variable.   
 
For problems in which data varies in a single dimension then techniques for the 
identification of patterns or discrete changes, are well-established.  In many cases 
something as straightforward as simple regression could be sufficient.  Similarly in 
two dimensions then methods such as spatial clustering might provide a robust 
approach to pattern recognition.  However in the current context in which the 
system of interest varies simultaneously in at least three dimensions (i.e. a 
characteristic is differentiated by attribute variation in both space and time) then the 
problem is more challenging. 
 
The MoSes1 project (Modeling and Simulation for e-social science, Birkin et al. 2009) 
promotes demographic simulation using hybrid models. Whilst grounded in the 
methods of microsimulation, concepts from spatial interaction modelling and agent-
based systems are incorporated into the MoSes approach (Townend et al. 2009, Wu 
and Birkin 2012). Geographical microsimulation involves the fusion (matching, 
merging) of census and survey data to simulate a population of individuals within 
households (for different geographical units), whose characteristics are as close to 
the real population as it is possible to estimate (Ballas et al. 2005). To generate the 
baseline spatial data different techniques exists for optimization of the fusion and 
resampling using usually re-weighting methods (see a recent review in Hermes and 
Poulsen 2012). For population simulation forecasts, MoSes approach uses dynamic 
modelling for population projections where processes such as marriage, fertility, or 
mortality are operated individually rather than resampling the population for the 
new period as when using static methods (i.e., derived from macro, aggregated 
parameters) (Birkin and Clarke 2011).  

                                                        
1 MoSes is now part of the Generative e-social spatial simulation  GENeSIS 
initiative http://www.genesis.ucl.ac.uk/ 
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Initial composition of households microdata have been generated using MoSes 
based on the Sample of Anonymised Records (SARs) from the 2001 UK population 
census and resampled according to local distributions (in each Leeds Output Areas) 
provided by the SAS (Small Area Statistics) issued from the census data.  The final 
dataset covers the Leeds area from 2001 with 296769 households composed of 
701219 individuals to 2031 with 351953 households representing a population size 
of 826015. Each individuals has attributes related to the economical, demographic, 
and health domains as described in the survey data (SARs), e.g.:  
(age)  Age of the respondent in 5 intervals up to age18, age26, age44, age64 and age80 
(sex)  Male or female labeled sex1 and sex2 
(hrsocgrd)  Social grade of household reference person labeled soc-9-soc5 (see Appendix) 
(car)  Number of cars owned labeled car<value>, with values 0, 1, 2(more than 1) 
(ethew)  Ethnic group for England and Wales reclassified in 5 groups (see Appendix) 
(health)  Self-assessment for general health in the last 12 months: -9- not applicable (student 

living away), 1-good, 2-fairly good, 3- not good (here labeled hea-9 – hea3) 
(llti)  Limited long term illness: 1-yes, 2-no (here labeled llt1 and llt2) 
(hhlthind) Household health and disability indicator: 0-noone with general health as ‘not good’ 

or llti, 1- at least one has either (here labeled hlt-9, hlt0, hlt1) 
(provcare) Number of hours of care provided per week pro<value> (see Appendix) 
(tranwrk0)  Transport to work (labeled trw<value>) regrouped in 4 classes (see Appendix) 
Not all the variables have been used here but the covered domains mentioned 
above are representing altogether 96 categories (they will be described as they will 
be highlighted during the analyses, see further sections, see also the annexe). The 
analyses will be made on aggregated data at different scales: ward level (33 wards), 
middle layer Super Output Areas MSOA (108 MSOA), lower super output areas (476 
LSOA) and at Output Areas levels (2439 OAs). Seven time steps have been retained 
for the analysis: every 5 years from 2001 to 2031. 
 
3 Simple and Multiple Correspondence Analysis 
 
The basics of correspondence analysis and its extension to multiple correspondence 
analysis help to understand the multiway extension; further explanations can be 
found in the references quoted in introduction. With two categorical variables 
respectively with I and J categories, a simple contingency table or cross-table 𝑛𝑖𝑗 
with 𝑖 = 1 𝑡𝑜 𝐼 and 𝑗 = 1 𝑡𝑜 𝐽 leads to the joint distribution of the two qualitative 
variables: 𝑝𝑖𝑗 = 𝑛𝑖𝑗/𝑁where 𝑁 = ∑ 𝑛𝑖𝑗 = 𝑛..𝑖𝑗  is the total sample size. Testing the 
independence of the two variables, that is comparing 𝑝𝑖𝑗 with �̂�𝑖𝑗=𝑝𝑖.𝑝.𝑗, can be 
performed using the  chi-square statistic, measuring the lack of independence by: 

𝜒2/𝑁 =  ∑ 𝑝𝑖.𝑝.𝑗(𝑝𝑖𝑗−𝑝
�𝑖𝑗

𝑝𝑖.𝑝.𝑗
)2𝑖𝑗

 
     (1) 

Equation (1) is also the inertia, that is, the sum of the eigenvalues, of a particular 
principal component analysis (PCA) decomposition, in fact a singular value 

decomposition (SVD), of the 𝐼 ×  𝐽 matrix Z, 𝑍𝑖𝑗 = 𝑝𝑖𝑗−𝑝�𝑖𝑗
𝑝𝑖.𝑝.𝑗

 with diagonal metrics 𝐷𝐼 

and 𝐷𝐽made from the margins respectively 𝑝𝑖.’s and 𝑝.𝑗’s  of the matrix P (for more 
details see for example  Greenacre 2007) This multidimensional analysis, the FCA, 
can therefore provide a break down of the lack of independence between the two 
variables with quantitative evaluation of the revealed associations (the eigenvalues 
and percentage of inertia they represent) and with scores for each categories on 
each dimensions (eigenvectors) linked to their contribution to the departure from 
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independence. Because the 𝐼 ×  𝐽 matrix 𝑃 = (𝑉𝐼) 
𝑡 𝑉𝐽, where 𝑉𝐼 is the 𝑁 ×  𝐼 matrix 

identifying the categories for each of the N observations (individuals) and idem for 
𝑉𝐽, the FCA of P and the FCA of the concatenation these two matrices of 0’s and 1’s, 
that is the FCA of 𝑈 = (𝑉𝐼 ⋮ 𝑉𝐽) or also the FCA of 𝐵 = (𝑈) 

𝑡 𝑈 (called the Burt table) 
have the same results for the scores (re-standardised) of each categories and the 
eigenvalues have a simple relationship: 𝜆𝑈 =  �𝜆𝐵 = (�𝜆𝑃 + 1)/2.  
When U is a concatenation of more than two variables, the FCA of U is called the 
MCA as well as the FCA of B, but the latter is often just called the FCA of the Burt 
table. 
Within the R software, and besides the corresp() function in the MASS library 
(by default in the R installation), packages such as ca, ade4 and PTAk, allow to 
perform the FCA and MCA methods as well a few other packages: see the CRAN task 
view on Multivariate Statistics at your local CRAN2).  
 
3.1 data manipulation in R 
After reading the data files of the separated values, the table(s) are prepared and 
the correspondence analysis can be performed.  A typical coding is given below and 
the R script file can be found at c3s2i.free.fr/MoSesOAWard.FCAk.tutorial.R.     
 
3.2 a simple example 
Reading the year 2001 data of the Leeds microsimulation from the MoSes project 
into a data.frame and creating a contingency table from two categorical variables 
to perform the correspondence analysis is done by: 
> dat01 <- read.table("trans01.txt") 
> crossTab. sochealth <- xtabs(~ V19 + V13, exclude = c(NA, NaN),data = dat01) 
> library(PTAk) 
> crossTab.sochealth.FCA2 <-FCA2(crossTab.sochealth) 
summary(crossTab.sochealth.FCA2) 
 +++ FCA-  complete independence  ++  2 modes+++   
     ++ Contingency Table  crossTab.sochealth   6 4  ++  
     -----Total Percent Rebuilt---- 100 %  
     ++ Percent of lack of  complete independence  rebuilt  ++  100 %  
                    selected pctoafc >  0.5 %  total=  100  
    -no- --Sing Val-- --ssX-- --Global Pct--  --FCA-- 
vs1    1     1.000000  1.0697      93.485349       NA 
vs2    2     0.259736  1.0697       6.306769 96.80900 
vs3    3     0.041806  1.0697       0.163389  2.50802 
vs4    4     0.021816  1.0697       0.044494  0.68298 
++++               ++++  
 Shown are selected  over  3  PT  with pct FCA > 0.5 % 
 
Each line with a “>” is an instruction within the R interface which can return or not a 
printed result. The first three lines are executing something and storing the result in 
an object (on the left hand side of the “<- “ symbol). V19 is the hrsocgrd categorical 
variable with 6 categories and V13 is the health variable. FCA2() is the 
implementation of an FCA within the R package PTAk, loaded by the 
command/function library(). Because of the linear relationships: 𝑝.𝑗 = ∑ 𝑝𝑖𝑗𝑖  and 
idem for the row margins, decomposing the matrix Z or simply the matrix of the 

𝑝𝑖𝑗
𝑝𝑖.𝑝.𝑗

 

is equivalent. This is apparent from the first singular value, vs1, to be 1.000000 and 

                                                        
2 Mirrors of Comprehensive R Archive Network (CRAN) are at www.r-project.org e.g.,  
http://cran.ma.imperial.ac.uk/ is one in the U.K. 
 

http://www.r-project.org/
http://cran.ma.imperial.ac.uk/
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associated components to be vectors of 1’s naturally retrieved within the algorithm. 
The components are accessed from the output object, basically a list of results for 
each mode (entry of the table), so here [[1]] corresponds to the rows of the cross-
table and [[2]] to the columns; $v is the matrix of components values for each 
singular value: 
> crossTab.sohe.FCA2[[1]]$v[1,] 
 [1] 1 1 1 1 1 1  
> crossTab.sohe.FCA2[[2]]$v[1,] 
[1] 1 1 1 1  

This choice of implementation is useful for first quantifying directly from the analysis 
the amount of independence between the two variables (for this FCA2 analysis 93.5% 
of the variability is explained by independence), and will be also useful for the 
extension to k variables, the FCAk method. Traditional plots in FCA or MCA involves 
biplots, in PTAk  unscaled scatterplots (raw vectors are normed to 1 within their 
metric space) are the default: 
> plot(crosstab.sohe.FCA2,nb1=2,nb2=3,mod=c(1,2)) 
A symmetric-map biplot (as the default plot in ca) as represented in Figure 1 can be 
performed by: 
> plot(crossTab.sochealth.FCA2,nb1=2,nb2=3,mod=c(1,2), 
 coefi=list(c(0.259736,0.259736),c(0.041806,0.041806)) ) 

 

 
Figure 1: Symmetric-map biplot for the FCA2 of the nssec x health table.  
 
where coefi is weighting each element of the components to display. Figure 1 
expresses a gradient of health on the first dimension with a minor moderation 
expressed on the second dimension (only 2.5% of departure from independence), 
associated with a gradient on the social grade (not applicable social grade being 
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more likely at the end of this gradient associated with poor health). This quick 
interpretation has to be “weighted” by the quality of projection of each category and 
their contributions on each dimension. This is done using the classical measures 
COS2 and CTR, which are respectively, the ratio to the whole variability of a given 
category (an item within a mode) and the ratio to the variability accounted by the 
component (the squared singular value): 
> cbind(CTR(crossTab.sochealth.FCA2,mod=1,solnbs=2:4), 
  COS2(crossTab.sochealth.FCA2,mod=1,solnbs=2:4, FCA=TRUE)) 
   ctr_:2:_vs2 ctr_:3:_vs3 ctr_:4:_vs4 cos2_:2:_vs2 cos2_:3:_vs3 cos2_:4:_vs4 
-9         535          95         304          991            5            4 
1          190         496           0          936           64            0 
2           84           6          44          995            2            4 
3           25         183          34          832          160            8 
4            9         220          57          592          381           27 
5          158           0         560          976            0           24 
> cbind(CTR(crossTab.sochealth.FCA2,mod=2,solnbs=2:4), 
 COS2(crossTab.sochealth.FCA2,mod=2,solnbs=2:4, FCA=TRUE)) 
   ctr_:2:_vs2 ctr_:3:_vs3 ctr_:4:_vs4 cos2_:2:_vs2 cos2_:3:_vs3 cos2_:4:_vs4 
-9          34         927          32          582          414            4 
1          294          20          38          997            2            1 
2          234           7         522          984            1           15 
3          439          46         408          991            3            7 

From their definitions the sum of CTRs across the mode items is 1000 and the sum of 
COS2 across the whole components rebuilding all the data is also 1000. The social 
category gradient is weakened by the small CTRs for category 3 and 4 on vs2, which 
are nonetheless well represented on it. The second dimension expresses more the 
opposition of category 1 to 3 and 4, associated with the -9 for health (not applicable, 
student living away), which builds this dimension (CTR = 927). 
 
3.3 an MCA on spatial data 
Besides being able to analyse more than two variables, one advantage of the MCA 
approach is to obtain the subject “cloud of points” as well as the variable-categories 
scatterplots. Here there is no desire to derive loadings for 700 000 people as we 
rather use directly the SARs data for this, but after the simulation one may be 
interested to know the spatio-temporal variations over the Leeds area. Notice that 
according to the distributional equivalence property of the chi-square distance (see 
for example Lebart et al. 1984), performing an MCA where the subject entry has 
been aggregated to spatial units would be equivalent to the non-aggregated one if 
the profiles were proportional. This is the implicit assumption when aggregating 
data.   
The variables spatially analysed chosen were hrsocgrd , sex, age, ethew, health, 
hhlthind, llti, provcare, tranwrk0 and carh so covering socio-demographic 
information including ethnicity, general health related information, and some 
transport use information (see appendix for a description of the categories). Below is 
the R code with the results to perform an MCA for these variables aggregated at OA 
levels (2439 OAs in Leeds), for the year 2001 (dat01). The OA variable is V3: 
> spaTab <- xtabs(~ V3 + V19, exclude = c(NA, NaN),data = dat01) 
> colnames(spaTab)=paste("soc",colnames(OA19),sep="") 
> listV=c(30, 6, 7, 11,13,14,23,29,33) 
> listVn=c("sex","age","car","eth","hea","hlt","llt","prov","trw") 
> for (v in 1:length(listV)){ 
 temp <- xtabs(~ V3 + get(paste("V",listV[v],sep="")), exclude = c(NA, NaN),data = 
dat01) 
colnames(temp)=paste(listVn[v],colnames(temp),sep="") 
spaTab <- cbind(spaTab,temp) 
} 
> dim(spaTab) 
[1] 2439   39 
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> spaTab.MCA <- FCA2(spaTab) 
> summary(spaTab.MCA,testvar=2) 
+++ FCA-  complete independence  ++  2 modes+++   
     ++ Contingency Table  spaTab   2439 39  ++  
     -----Total Percent Rebuilt---- 100 %  
     ++ Percent of lack of  complete independence  rebuilt  ++  100 %  
                    selected pctoafc >  2 %  total=  89.58517  
    -no- --Sing Val-- --ssX-- --Global Pct-- --FCA-- 
vs1    1     1.000000  1.1038       90.59879      NA 
vs2    2     0.224699  1.1038        4.57431 48.6566 
vs3    3     0.118833  1.1038        1.27936 13.6085 
vs4    4     0.097135  1.1038        0.85482  9.0927 
vs5    5     0.077182  1.1038        0.53970  5.7408 
vs6    6     0.067015  1.1038        0.40689  4.3280 
vs7    7     0.058105  1.1038        0.30588  3.2536 
vs8    8     0.053006  1.1038        0.25455  2.7076 
vs9    9     0.047751  1.1038        0.20658  2.1973 

++++               ++++  
 Shown are selected over 38 PT with pct FCA > 2 % 

 
The independence (2 by 2 independence between the variables as observed on the 
OAs) captures 90% of the variability. This is represented by the margins of the table 
as displayed in Figure 2 illustrating respectively variation of the population in Leeds 
at OA levels and the observed proportions for each variable category over the whole 
area. The categories of age, ethnicity and transport to work have been recoded to 
ease the analysis (see appendix table). 
To display the spatial component the R code is as follow, where plotmapbarq() uses 
the plot function from the package sp and builds up a legend based on percentiles of 
the values: 
> library(RColorBrewer) 
> Yl <- brewer.pal(7, "PuOr") 
> library(maptools) 
> OAmap = readShapePoly("Zleeds_oas.shp", IDvar="ons_label") 
> met <- FCAmet(spaTab) 
> plotmapbarq(Poly=OAmap,nclass=10,nvec=met$met[[1]]*(1/2439)*100, 
   colrmp=colorRampPalette(Yl)(10))  

Variables histograms are done using the following code: 
> marginVar701219dat01=apply(spaTab,2,sum)   # 
all(round(OAmet$met[[2]]*10*701219)==marginVar701219dat01) 
> par(mfrow=c(3,1)) 
> barplot(marginVar701219dat01[1:6]/7012.19,xlab="hrsocgrd",ylab="%") 
> barplot(marginVar701219dat01[7:8]/7012.19,xlab="sex",ylab="%") 
> barplot(marginVar701219dat01[9:13]/7012.19,xlab="ageh",ylab="%") 
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Figure 2:  Margins –spatial margin represented at OA level in % relative to uniform 
distribution (100%≍1/2439 ≍290) where a threshold >500 was applied to be able to 
depict the distribution of %, the colours classes are spread along the 10 percentiles – 
variable margin split by variable representing for each their distribution in 2001 
overall at Leeds.   
Notice that in theory in Figure 2, the population distribution at OA levels should be 
relatively uniform, so around the 100% level. In theory UK census boundaries are 
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made to count around 300 people in each OA, but in fact at Leeds the distribution 
from the 2001 census shows 75% of the OAs within the 255-325 range and also a 
minimum at 108 and a maximum at 1236. There is nonetheless a discrepancy 
between the 2001 census OA counts and the values from the MoSes microsimulation 
which is explained by a two stage strategy in the simulation: a highly constrained 
simulation at ward level (around 20 000 people) then a redistribution at OA level 
with less constraints (see Birkin et al 200x for more details). 

 
Figure 3:  Margins –spatial margin represented at ward level in % relative to uniform 
distribution (100% ≍ 1/33 ≍ 21500) – ranging from 16 000 to 29 000 besides 
Headingly (University area- 17) the wards in the centre are less populated and wards 
at the southwest, northwest and northeast are the most populated. (1-Aireborough, 2-
Armley, 3-Barwick and Kippax, 4-Beeston, 5-Bramley, 6-Burmantofts, 7-Chapel Allerton 8-City and 
Holbeck, 9-Cookridge, 10-Garforth & Swillington, 11-Halton, 12-Harehills, 13-Headingley, 14-
Horsforth, 15-Hunslet, 16-Kirkstall, 17-Middleton, 18-Moortown, 19-Morley North, 20-Morley South, 
21-North, 22-Otley & Wharfedale, 23-Pudsey North, 24-Pudsey South, 25-Richmond Hill, 26-Rothwell, 
27-Roundhay, 28-Seacroft, 29-University, 30-Weetwood , 31-Wetherby, 32-Whinmoor, 33-Wortley) 
 
Looking at the CTR and COS2 together with Figure 4, the vs2 dimension opposes social 
grade (hrsocgrd) category soc5 (E- on benefit/unemployed) in association with young 
adults (age26- over 18 and less/equal to 26 years of age) from ethnicity groups 11 14 

or 17 (coded here as Asian, black Caribbean, and other in a lesser extent) with no car 
(car0), to, the social grades soc1-3, old adults (age64- over 44 and less/equal to 64), 
and being from white origin (eth3 ethnicity groups 3) with more than one car (car2). 
The transport to work categories trw1, trw6 and trw9 (respectively public transport, 
personal/taxi motoring, cycling or on foot) are also well projected on vs2 to this 
latter side but trw6 is mainly illustrating (CTR and COS2) the opposition with the not 
applicable category trw-9.  On the vs3 dimension, the social grades soc1-4 are 
spreading like a gradient, opposing soc1-2 to soc3-4 along with the not applicable 
category soc-9. 
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Figure 4:  MCA of the OA aggregated chosen set of variables - first two variables 
components representing altogether 62% of the lack of independence (the bottom 
picture is a zoom in of the top one) 
 
The CTRs are nonetheless much higher for soc1 and soc4; soc3 is not well projected 
on vs3 (low COS2). This is associated with more than 1 car (car2) in the soc1-2 side 
and with good health (hea1, hlt0, llt2; note that the Not Applicable or -9 category 
for llti, health and provcare are also on this side) as opposed to soc4 (category D: 
semi-skilled and unskilled manual workers) with age80 (over 64 years of age) with 
limited long term illness, fairly good or not good health and needing a fairly high 
number of hours for care (llt1, heal2-3, prov3-4). 
Spatially (see Figure 5) the above descriptions for the vs2 dimension are more likely 
associated: on the positive side with the Northwest close to the city centre (wards 
13, 29 and including the Northeast of 8 (city centre)) and on the negative side of vs2 



NCRM Publications: Working papers 

 13 

with a few Northern and a few Eastern rural OAs (East of ward 22, West of ward 21, 
West of ward 31, West of ward 3, a good part of ward 10). For the vs3 dimension, 
the positive side is expressed on the East and South of the city centre (covering parts 
of ward 25, 15, 17 and Eastern part of 20), and the negative side is also on the 
Northern part of the district and more in the wards 27 and Western parts of 3 and 
31.  

 
Figure 5: MCA of the chosen set of variables aggregated at OA level - first two spatial 
components representing 62% of the lack of independence. OAs with the highest CTR 
and COS2 have been tagged with a red “.” and in the grey thumbnail map (on the vs2 
map 306 OAs and on the vs3 map 34 OAs)  
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The overlay and tagging on the plots are done using the following R code, here for 
the spatial component vs2: 
> poilab=rep("",2439) 
> poilab[CTR(spaTab.MCA,mod=1,solnbs=2:3)[,1]>8 | 
COS2(spaTab.MCA,mod=1,solnbs=2:3)[,1]>666]="." 
> summary(as.factor(poilab)) # 306 OA highlighted 
> plotmapbarq(Poly=OAmap,nclass=10,nvec=spaTab.MCA[[1]]$v[2, ], 
  colrmp=colorRampPalette(Yl)(10),labels=poilab,cex=0.7,col="red",  
 overlay=list(map=Wmap,border="black"))  
> legend(locator(1),"vs2 48.65% ",bty="n") 

and  
> colCTRCOS2=rep("grey",2439) 
> colCTRCOS2[poilab=="."]="red" 
> plot(OAmap,border="white",col=colCTRCOS2) 
 
3.4 FCA or MCA relative to a model 
Classical correspondence analysis deals with decomposition of the chi-square of 
independence but in formula (1) �̂�𝑖𝑗can be representing any other model than the 
independence model (Escofier 1984, Greenacre 2007). For spatial data an interesting 
application of this method is to analyse the deviations at a fine scale from the 
observed data or modelled data at a coarser scale. For the MoSes data the fine scale 
is at OA level and the coarser scale will be the same data aggregated at ward level. 

 
Figure 6: MCA of the chosen set of variables aggregated at Ward level- first two 
spatial components representing 83% of the lack of independence 
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The interpretations of the results from the MCA at Ward level are very similar to the 
one at the finer scale level OA (notice that, as the signs of the dimensions have 
changed both spatially and for the variables, the meaning is equivalent). A noticeable 
difference between the analysis at OA levels and at Ward levels is the presence of 
the so-called horseshoe effect or Guttmann effect on the vs2 x vs3 display, which 
expresses a relation like vs3 vector related to the square of the vs2 values, so that 
vs3 associates the “extremes“, dissociated on vs2, in opposition to the “averages”.  
 
When using the FCA/model analysis, if the data table and the model table have the 
same margins the chi-square distance keeps the same interpretation with respect to 
profiles distances on rows and columns (conditional probabilities) and no effects of 
the margins differences have to be taken into account when interpreting the results. 
This is the case when modelling the OA table using the Ward level values uniformly 
distributed in its OAs: 

 �̂�𝑖𝑗 = (∑  𝑛𝑎𝑗𝑎∈𝑤(𝑖) )/𝑛𝑜𝑎𝑤(𝑖)/𝑁    (2) 
where 𝑤(𝑖) is the ward from which the 𝑖 th OA belongs to and  𝑛𝑜𝑎𝑤(𝑖) is the number 
of OA in that ward. The R code to build this model by creating the matrix, Moa is given 
below along with the call of the correspondence analysis of OAs in relation to this 
model being just the downscaled values of the Ward aggregation: 
 
> Wnoa=summary(as.factor(WaOA[,1]))[c(1,12,23,28:33,2:11,13:22,24:27)] 
> Mw=WardTab/Wnoa/sum(WardTab) 
> Moa.w=spaTab #to initiate the dimensions and names  
> all(WaOA[,2]==rownames(spaTab)) #TRUE 
> for (w in 1:33){  
  Moa.w[WaOA[,1]==rep(paste("w",w,sep=""),2439),]=rep(1,Wnoa[w])%o%Mw[w,] 
 } 
> all(apply(Moa.w,2,sum)*sum(WardTab)==apply(WardTab,2,sum)) #TRUE 

and the analysis is: 
> spaTab.MCA.Moa.w <- FCA2(spaTab, E=Moa.w) 
> summary(spaTab.MCA.Moa.w) 
+++ FCA-   model(E=)   ++  2 modes+++   
     ++ Contingency Table  spaTab   2439 39  ++ 
     -----Total Percent Rebuilt---- 100 %  
     ++ Percent of lack of   model(E=)   rebuilt  ++  100 %  
                    selected pctoafc >  0.5 %  total=  97.58512  
    -no- --Sing Val-- --ssX-- --Global Pct--  --FCA-- 
vs1    1     0.733223 0.62165       86.48254 86.48254 
vs2    2     0.191106 0.62165        5.87493  5.87493 
vs3    3     0.104577 0.62165        1.75926  1.75926 
vs4    4     0.094333 0.62165        1.43147  1.43147 
vs5    5     0.072363 0.62165        0.84234  0.84234 
vs6    6     0.064138 0.62165        0.66173  0.66173 
vs7    7     0.057554 0.62165        0.53286  0.53286 
++++               ++++  
 Shown are selected  over  38  PT  with pct FCA > 0.5 % 
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 Figure 7: First two dimensions of the MCA in reference to a model: data are the 
chosen set of variables aggregated at OA levels, modelled by the ward level counts 
uniformly distributed (uniform downscaling) 

 
Figure 8: First spatial dimension (vs1, 86.5%) of the MCA in reference to a model 
OA/Ward. The values have been classified in 4 classes due to the very skewed 
distribution (lower panel), the legend of these classes refers to the third quartile Q3 
= 1.001. 
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Figure 9: Second spatial dimension (vs2, 6%) of the MCA in reference to a model 
OA/Ward. The values have been classified in 5 classes due to the leptokurtic shape 
of the distribution, the legend representing the classes with their limits with an 
unscaled vertical bar. 
 
This analysis is highlighting the OAs and variables categories irrespective to their 
Ward predictions (derived from aggregated observations), i.e., departing from the 
Ward model. So it is not surprising that one get very spiky or skewed distributions of 
the values in Figure 8 and 9. Basically the OAs in dark blue and to a lesser extent in 
grey-blue are not following the profile of the categories we have seen in Figure 4 and 
6. One can notice that these OAs (at least the ones in dark blue in Figure 8) are in the 
lower part of the distribution of the values in Figure 9 (dark brown) young (age 21-
26) from non white origins (eth11, eth14, eth17) eth, in bad health, of social grade 
soc5, opposed to the more wealthy in good health with nonetheless some care 
weekly provided (provcar2: up to 19 hours/week) middle aged and older (up to 64 
years of age) with a social grade soc 1-3 but also soc4 mainly from white origins 
(eth3).  
 
4 Multiway Correspondence Analysis 
 
So far a simple and multiple correspondence analysis have been demonstrated using 
R library PTAk and its respective functions but other R packages can be used to give 
the same results with similar functions: ca, ade4 and others. In this section multiway 
correspondence analysis, which is part of the PTAk R package is going to be 
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illustrated. Pursuing the arguments already mentioned in the introduction about the 
need of a multiway method extending the correspondence analysis methods, one 
can add or refine a few in the context of geosimulation. Concerning the spatio-
temporal realm, sets of pairwise associations for some categories of the variables 
measured at different time may become difficult to interpret in the absence of 
simple gradients. So it may become easier to associate a temporal pattern to a 
variable pattern in the same way that in the previous sections a spatial pattern was 
associated to the latter. Therefore instead of looking at two sets of associated 
patterns one would like to get simultaneously three here (patterns in space, time 
and variable). In the same way one would prefer to separate observations done at 
different scales (Leibovici and Jackson 2011), nonetheless section 3.4 illustrated 
another way of dealing with different scales and integrating this aspect in the model 
itself. 
  
4.1 a brief on the FCAk methodology 
The multiplicative modelling aspect already existing in the PCA decomposition, i.e., 
sum of products of vectors (each vector representing a pattern or a profile of the 
entry of the table) is extended to table with more than two entries in the PTAk 
decomposition. For 2 modes PCA or FCA are dealing with matrices, and for k>2 
modes, PTAk or FCAk are dealing with multiway tables, that is arrays with more than 
two dimensions which can be also seen as tensors. From a mathematical algebraic 
point of view a tensor is a multi-linear operator: a 1 linear operator is a single vector, 
a bilinear operator correspond to a matrix, and tensors of order k>2, multi-linear 
operators, can be seen as multiple arrays. Elementary tensors, corresponding as well 
to the notion of linear operator of rank 1, are simply composed from the product 
(tensor product also termed outer product) of vectors. When performing a PCA or an 
SVD the first set of components looked for are, a vector capturing a pattern of the 
rows and a vector capturing a pattern of the columns, so that the bilinear operator 
made from the tensor product of these two vectors give the best approximation of 
the whole matrix analysed (best among the rank 1 bilinear operators): 

𝑟1 𝑡𝑐1 = 𝑟1⨂𝑐1 =  𝑎𝑟𝑔min
𝑟 ⨂𝑐  /

‖𝑟‖=‖𝑐‖=1

‖𝑀 − 𝑟 ⨂𝑐 ‖2      (3) 

where r is a unit vector of the same dimension as the rows of the matrix M and idem 
for c as a vector of the same dimension as the columns of the matrix M. The 
expression 𝑟1⨂𝑐1 is the called tensor product of the therein vectors and can be 
represented in a matrix form (left term of the equality) and as solution of the 
optimisation in (3) it is termed a principal tensor. The principal tensor optimisation in 
(3) extends to any dimensions, that is to a multiway table T: 

𝑟1⨂𝑐1⨂𝑑1 …⨂𝑧1 = 𝑎𝑟𝑔min
𝑟 ⨂𝑐⨂𝑑  …⨂𝑧   / 

‖𝑟‖=‖𝑐‖=‖𝑑‖…‖𝑧‖=1

  �𝑇 − 𝑟 ⨂𝑐 ⨂𝑑  …⨂𝑧 �
2
  (4) 

where r, c, d …, z are unit vectors of dimensions corresponding to the length of an 
entry in the multiway table or Array T. The norms, as in the expression ‖𝑟‖, in 
equation (3) and (4) are dependent of the choice of the metrics in the respective 
vector spaces: for example ‖𝑟‖2 = ∑ 𝑟𝑖𝑑𝑖𝑗𝑟𝑗𝑖𝑗 =  𝑡𝑟𝐷𝑟  where D is a symmetric 
positive semi-definite matrix (i.e., in order to make the norm positive or zero, and 
therefore the distances). The metric in the tensor space that is for matrices M or for 
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tensor T is the tensor product of the metrics; see Leibovici (2010) for further details 
as well as how the algorithm carries on after the first principal tensor optimisation. 
To perform an FCAk where k = 4, that is a table T with 4 entries, we perform the 
PTAk of the multiway table 𝑇𝑟𝑐𝑑𝑙 = 𝑝𝑟𝑐𝑑𝑙

𝑝𝑟...𝑝.𝑐..𝑝..𝑑.𝑝…𝑙
 with the metrics 𝐷𝑅, 𝐷𝐶 , 𝐷𝐷 and 𝐷𝐿 

containing the margins of the table T along their respective entry, e.g.,  𝐷𝑅 =
𝑑𝑖𝑎𝑔(𝑝𝑟...). 
As with an FCA2, this analysis retrieves for the first set of components, also called 
from now the first principal tensor, the complete independence model, therefore 
gives also beyond this point in algorithm a decomposition of the chi-square statistic 
of independence like in the equation (1). Nonetheless, unlike an FCA2, it is necessary 
to perform an FCAk this way if one wants to fully decompose the chi-square. For 
example when k = 3, the chi-square can be expressed in a sum showing some parts 
involving two-way independences as well. Equation (5) gives some insights into this; 
see also Leibovici (2010): 

� 𝑝𝑟𝑐𝑑
𝑝𝑟..𝑝.𝑐.𝑝..𝑑

− 1� = � 𝑝.𝑐𝑑
𝑝.𝑐.𝑝..𝑑

− 1� + � 𝑝𝑟.𝑑
𝑝𝑟..𝑝..𝑑

− 1� + � 𝑝𝑟𝑐.
𝑝𝑟..𝑝.𝑐.

− 1� + 𝑟𝑠𝑑   (5) 

where 𝑟𝑠𝑑  is the what is left (the residual). Because this decomposition is 
orthogonal, that is, the decomposition stands when computing the squared norm of 
each tensor with the running elements being each part of (5), the FCAk, here an 
FCA3, is related to three independent FCA2s which are also independent from the 
decomposition of rsd. 
 
4.3 a spatio-temporal FCAk 
As a first example the same data structure as in 3.3 is used but with time added as a 
third mode, so an FCAk with k=3 modes is performed on the 6 periods of 5 years all 
put in an array of dimension 2439 x 7 x 39: 
> STOA=array(rep(0,2439*7*39),c(2439,7,39), 
   dimnames=list(rownames(spaTab), 
    c("y01","y06","y11","y16","y21","y26","y31"), 
         colnames(spaTab))) 
> STOA[,1,]=spaTab;STOA[,2,]=buildspaTab(dat06);STOA[,3,]=buildspaTab(dat11); 
  STOA[,4,]=buildspaTab(dat16);STOA[,5,]=buildspaTab(dat21); 
  STOA[,6,]=buildspaTab(dat26);STOA[,7,]=buildspaTab(dat31 
> dim(STOA) 
[1] 2439    7   39 
> STOA.FCAk <-FCAk(STOA) 
>  summary(STOA.FCAk) 
++++ FCA-  3 modes++++   
     ++ Contingency Table  STOA   2439 7 39  ++  
-----Total Percent Rebuilt---- 99.28517 %  
     ++ Percent of lack of complete independence rebuilt  ++  93.49007 %  
                           selected pctoafc >  0.2 %  total=  87.9884  
                -no- --Sing Val--   --ssX-- --Global Pct--  --FCA-- 
vs111              1     1.000000 1.1233508      89.019388       NA 
2439 vs111 7 39    3     0.054556 1.0032358       0.264958  2.41296 
7 vs111 2439 39   10     0.218772 1.0754166       4.260568 38.80082 
7 vs111 2439 39   11     0.098375 1.0754166       0.861495  7.84560 
7 vs111 2439 39   12     0.072676 1.0754166       0.470189  4.28199 
7 vs111 2439 39   13     0.049589 1.0754166       0.218902  1.99353 
7 vs111 2439 39   14     0.048005 1.0754166       0.205145  1.86825 
7 vs111 2439 39   15     0.045430 1.0754166       0.183723  1.67316 
7 vs111 2439 39   16     0.040479 1.0754166       0.145864  1.32837 
7 vs111 2439 39   17     0.035166 1.0754166       0.110088  1.00257 
7 vs111 2439 39   18     0.030197 1.0754166       0.081173  0.73924 
7 vs111 2439 39   19     0.022329 1.0754166       0.044385  0.40421 
7 vs111 2439 39   20     0.016599 1.0754166       0.024526  0.22336 
39 vs111 2439 7   49     0.137015 1.0260259       1.671183 15.21939 
39 vs111 2439 7   50     0.044011 1.0260259       0.172426  1.57028 
39 vs111 2439 7   51     0.038259 1.0260259       0.130306  1.18669 
39 vs111 2439 7   52     0.036954 1.0260259       0.121563  1.10707 
39 vs111 2439 7   53     0.035925 1.0260259       0.114886  1.04626 
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39 vs111 2439 7   54     0.034579 1.0260259       0.106442  0.96937 
vs222             55     0.037645 0.0186726       0.126154  1.14888 
7 vs222 2439 39   64     0.029085 0.0056972       0.075303  0.68578 
7 vs222 2439 39   65     0.023334 0.0056972       0.048470  0.44142 
7 vs222 2439 39   66     0.020774 0.0056972       0.038418  0.34987 
7 vs222 2439 39   67     0.017669 0.0056972       0.027793  0.25311 
7 vs222 2439 39   68     0.016465 0.0056972       0.024134  0.21978 
39 vs222 2439 7  103     0.018917 0.0027728       0.031857  0.29012 
39 vs222 2439 7  104     0.016813 0.0027728       0.025163  0.22915 
39 vs222 2439 7  105     0.016437 0.0027728       0.024050  0.21902 
vs333            109     0.018001 0.0115820       0.028847  0.26271 
7 vs333 2439 39  118     0.016301 0.0026574       0.023655  0.21543 
 
 ++++               ++++  
 Shown are selected  over  121  PT  with pct AFC > 0.2 % 
 

In the listing summary of the output from the FCAk, the name of the type of principal 
tensor is recognisable in the first column by the pattern of dimensions along with its 
main singular value name vs111, vs222 etc., then indicating the hierarchy of tensor 
solutions. For example the principal tensors with name type, 7 vs111 2439 39, 

correspond to the FCA2 mode once the 3-way table is collapsed on the time mode 
(of length 7). They are associated to the principal tensor vs111 via the time 
component, which is the same. These results show first of all that the complete 
independence represents 89% of the variability, so the margins encapsulate quite a 
lot of the spatio-temporal changes.  
Now contracted in time (the tensors 7 vs111 2439 39), the correspondence analysis 
(equivalent to an FCA2 of the weighted sum over the years of the 2439 x 39 tables) 
captures 61% of the lack of complete independence, so not associated with 30 years 
of evolution. The results for this series of tensors, at least the main two first 
components, are very similar to the analysis just on year 2001 performed in the 
previous section. 
Similarly 2.6% of the lack of complete independence is not due to OAs differences 
(the tensors 2439 vs111 7 39). In other words 2.6% of time-variable interaction is 
independent of the OAs differences, and finally 21.1% of the spatio-temporal 
variation is not due to variables profiles (the tensors 39 vs111 2439 7); this is 
population variation only. Figure 10 represents the main captured effect (vs n°49), 
which is correlated with the period differences; this is linked to a year component 
expressing a relatively linear gradient. The wards on the edges of the district in 
North or on the East along with wards n°19 and n°26 but also some wards close the 
north of the city centre (ward n°8) are increasing their population whilst areas 
immediately surrounding round these as well as east and west of the city centre 
show a diminution in population. 
So a total of nearly 85% of the lack of complete independence can be attributed to 2-
way interaction, leaving nonetheless altogether 15% of pure 3-way interaction that 
cannot be analysed by an MCA.  
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Figure 10: FCAk at OA levels of the Contingency Table: STOA   2439 7 39; Spatial-
temporal evolution of the population as expressed by the tensor vs n°49 expressing 
15% of the lack of complete lack independence but associated with a marginal effect 
along the variable mode. - bottom panel: spatial variation of the difference of 
population counts along the period of 30 years - 
 
Using a normalised spatial entropy index, based on co-occurrences counts within a 
given collocation distance (Leibovici and Birkin 2013), applied to the categorical 
variable representing the legend of the map (the spatial tensor mode 
representation) one gets a range of 0.45 to 0.52 according to a collocation variation 
from 2000m to 5000m. The normalised index is 1 when the distribution of co-
occurrences is uniform, so this indicates here a fairly strong spatial structure. 
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The linear gradient in time nonetheless also exists within the three-way interaction 
principal tensors, Figure 11 showing vs222 and its first associated principal tensor 
along the time mode, with again similar pattern of the variables. Figure 12 shows for 
each of the variable profiles a linear time trend added to the similar main “constant” 
effects from principal tensor n°10 and n°11. Notice that as the time mode 
component is the same for vs222 and any 7 vs222 2439 39 tensors (see Leibovici 
2010), the 7 years appears on the first diagonal of the plot in Figure 11. 

 
Figure 11: FCAk at OA levels of the Contingency Table: STOA   2439 7 39; tensor vs 
n°55 and n°64 expressing altogether 1.84% of the lack of complete lack 
independence each as a three-way interaction (spatial-temporal-variables)  
 
Therefore the opposition already seen in 2-modes analysis between soc5 and the 
other social grades is associated to a change over the years in the distribution of 
social grades: soc5 more prominent at the beginning of the period in less towards 
the end for some OAs. 
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Figure 12: FCAk at OA levels of the 7 Contingency Tables over the 30 years period: 
the data array STOA 2439 7 39; spatial components for principal tensors vs n°55 and 
n°64, with a thumbnail the OAs most contributing or best representing, highest CTR 
or COS2, onto the principal tensor: for vs222 (n°55) 47 OAs highlighted, for the other 
principal tensor 42 OAs highlighted (the large single OA northern central is within the 
ward 27- Roundhay). 
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The spatial structure of Figure 12 exhibits some pockets of strong differences either 
on the positive or negative side of the dimensions with nonetheless expressing the 
extremes of regular circular gradients on both spatial principal tensors. Rings of 
structure in the inner suburb (for example with the wards 4, 33, 2, 5, 14, 9, 30, 18, 
27, 29 and 11) as opposed to the city centre can be depicted. The bottom map has 
also a north south differentiation for positive and negative values. 
  
 
4.4 spatial scale analysis with FCAk 
Being able to consider adding more of the data structure and sampling design 
directly into the data to be analysed increases the possibilities of analyses. The 
important aspect of the choice of the scaless, combined with the possibility of 
interaction through scale can be analysed using an FCAk of the table augmented 
with the scale aggregation aspects (Leibovici and Jackson 2011), and, like in section 
3.4 a correspondence relative to a model whilst using FCAk can be also performed, 
or both. For the MoSes data example the scale factor is the hierarchy of 
census/administrative boundaries of the Leeds district area: OAs (2439 units), LSOAs 
(476), MSOAs (108) and Wards (33) based on the census 2001 boundaries. 
 
4.4.1 aggregating the data and downscaling 
Below is the R code to be able to aggregate the frequencies at different scale levels 
and to downscale these aggregated values, so to illustrate and uniform 
homogeneous model coming a coarser scale. 
> CensusPopOA <- read.delim("OA.SOA.LSOA.Pop2001.txt") 
> nlevels(as.factor(CensusPopOA$OA_code)) 
 [1] 2439 
>  nlevels(as.factor(CensusPopOA$LSOA_code)) 
 [1] 476 
>  nlevels(as.factor(CensusPopOA$MSOA_code)) 
 [1] 108 
>  all(rownames(WaOA)==rownames(CensusPopOA)) 
[1] TRUE 
>  LSoa=as.factor(CensusPopOA$LSOA_code) 
##### 
> aggTab3 <-function(Tab3=STOA,by1=levels(LSoa),repby1=CensusPopOA$LSOA_code){ 
 #repby1 contains the levels and has the same length as dimanmes(STOA)[[1]] 
 #by1 is a grouping factor 
out=array(rep(0,length(by1)*dim(Tab3)[2]*dim(Tab3)[3]),c(length(by1),dim(Tab3)[2],dim(
Tab3)[3])) 
   dimnames(out)[[1]]=by1 
   dimnames(out)[[2]]=dimnames(Tab3)[[2]] 
   dimnames(out)[[3]]=dimnames(Tab3)[[3]] 
 for (i in 1:length(by1)){ 
  out[i,,]=apply(Tab3[repby1==dimnames(out)[[1]][i],,],c(2,3),sum) 
 } 
 return(out) 
}## 
> LSOATab=aggTab3() 
> MSOATab=aggTab3(by1=levels(as.factor(CensusPopOA$MSOA_code)), 
  repby1=CensusPopOA$MSOA_code) 
> WTab=aggTab3(by1=levels(as.factor(WaOA[,1])),repby1=WaOA[,1]) 
##### 
downScale3 <-function(fine=STOA,agg=WTab,repby1=WaOA[,1]){ 
 noa=summary(as.factor(repby1),maxsum=dim(agg)[1]) 
 Mass=agg/noa 
 out=fine 
 for (w in 1:dim(agg)[1]){  
  out[repby1==rep(dimnames(agg)[[1]][w],dim(fine)[1]),,]=rep(1,noa[w])%o%Mass[w,,] 
 } 
 return(out)  
}## 
> MOA.Ward=downScale3() 
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> MOA.Msoa=downScale3(,agg=MSOATab,repby1=CensusPopOA$MSOA_code) 
> MOA.Lsoa=downScale3(,agg=LSOATab,repby1=CensusPopOA$LSOA_code) 
 

4.4.2 multiscale FCAk 
The downscaled observations representing different scales of measuring an event can then 
be analysed simulataneously in order to detect effects across or particular ot specific scales. 
 
> STOAscales= array(rep(0,2439*7*39*4),c(2439,7,39,4)) 
> STOAscales[,,,1]=STOA 
> STOAscales[,,,2]=MOA.Lsoa 
> STOAscales[,,,3]=MOA.Msoa 
> STOAscales[,,,4]=MOA.Ward 
> dimnames(STOAscales)[c(1,2,3)]=dimnames(STOA) 
> dimnames(STOAscales)[[4]]=c("OA","LSOA","MSOA","Ward") 
> STOAscales.FCAk <- FCAk(STOAscales,addedcomment=" 4 upscaled aggregated ") 
> summary(STOAscales.FCAk,testvar=0.2) 
 +++ FCA-  complete independence  ++  4 modes+++   
     ++ Contingency Table  STOAscales   2439 7 39 4  ++  
     4 upscaled aggregated   
     -----Total Percent Rebuilt---- 99.76836 %  
     ++ Percent of lack of  complete independence  rebuilt  ++  98.28229 %  
                    selected pctoafc >  0.2 %  total=  92.35749  
                  -no- --Sing Val--   --ssX-- --Global Pct--  --FCA-- 
vs1111               1     1.000000 1.1558739      86.514627       NA 
2439-4 vs111 7 39   12     0.054556 1.0032358       0.257503  1.90950 
7-39 vs111 2439 4   25     0.239979 1.0812272       4.982352 36.94634 
7-39 vs111 2439 4   26     0.134887 1.0812272       1.574090 11.67257 
7-39 vs111 2439 4   27     0.073776 1.0812272       0.470895  3.49190 
7-4 vs111 2439 39   29     0.124506 1.0246931       1.341126  9.94504 
7-4 vs111 2439 39   30     0.054296 1.0246931       0.255051  1.89131 
7-4 vs111 2439 39   31     0.048429 1.0246931       0.202909  1.50466 
7-4 vs111 2439 39   32     0.039944 1.0246931       0.138035  1.02359 
7-4 vs111 2439 39   33     0.029114 1.0246931       0.073330  0.54378 
7-4 vs111 2439 39   34     0.018695 1.0246931       0.030238  0.22423 
7-vs222             67     0.100183 0.0194099       0.868315  6.43894 
7-39 vs222 2439 4   73     0.059012 0.0145015       0.301285  2.23416 
7-39 vs222 2439 4   74     0.031344 0.0145015       0.084996  0.63028 
7-4 vs222 2439 39   77     0.032669 0.0135770       0.092336  0.68471 
7-4 vs222 2439 39   78     0.027162 0.0135770       0.063831  0.47333 
7-4 vs222 2439 39   79     0.018610 0.0135770       0.029962  0.22218 
7-vs333            115     0.019666 0.0013669       0.033460  0.24812 
39-4 vs111 2439 7  173     0.123111 1.0162036       1.311233  9.72337 
39-4 vs111 2439 7  174     0.021623 1.0162036       0.040450  0.29996 
39-vs222           179     0.038930 0.0035632       0.131115  0.97228 
39-7 vs222 2439 4  185     0.020725 0.0022243       0.037161  0.27556 
4-vs222            250     0.025878 0.0038805       0.057937  0.42963 
4-7 vs222 2439 39  259     0.024015 0.0021558       0.049894  0.36998 
vs2222             358     0.017747 0.0036607       0.027249  0.20207 
 
 ++++               ++++  
 Shown are selected  over  367  PT  with pct FCA > 0.2 %   
 

The independence, that is only marginal effects, takes 86.5% of the variability, 
leaving 13.5% explained by lack of independence between the modes; about half of 
the lack of complete independence (37%+11.5%+3.5% from principal tensors 25, 26 
and 27) is due to OAs and scale interaction with marginal effect from time and 
variable, whilst around 15% is due to spatial variation of the variables marginally in 
time and scale (principal tensors 29-34).  
 
Another 10% (tensors 173-174) expresses two-way interactions between space and 
time marginally t scale and variable modes, which leaves 25% some of the lack of 
complete independence as due to multiway interactions with 10%  (tensors 67-79) 
associated to marginal time effect. So, 13.5% of this lack of complete independence 
(15% left minus % due to tensors 179-259) is due to multiway interactions without 
initial marginal effect involved. 
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Figure 13: FCAk with a mode as multiple scales (downscaled uniformly at OA levels), 
first two principal tensors associated to marginal effect for year and variable mode – 
equivalent to an FCA2 space x scale. 
 
In Figure 13, the spatial –scale interaction is shown representing 48.5% of the lack of 
independence. IT shows that the Ward and MSOA variations are similar and not in 
agreement with OA variations for the OAs with extreme values on the spatial 
component map of the axis (top map in Figure 13); some the units are the same on 
the other map associated with an opposition of LSOA to the other scale levels.  
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Figure 14: FCAk with a mode as multiple scales (downscaled uniformly at OA levels), 
first two principal tensors associated to marginal effect for year and scale mode – 
equivalent to an FCA2 space x variable (the bottom plot is a zoom of the dotted 
brown rectangle from the top plot) 
 
Marginally associated to time and scale, Figure 14 shows again on the horizontal axis 
(see also Figure 15 top panel) a strong association ethnicity and social grades, people 
in social category soc5 (hrscogrd E that is on benefit or unemployed) being more 
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often non-Caucasian white and of younger age (18-26 years old). The middle aged to 
the eldest (44 years old and over) had more likely, up to 19 hours of care provided 
per week, as opposed to the younger (18-44 years old) but the youngest (<18 years) 
had most of the cares (prov3 and prov4, more than 20 hours per week), this last 
aspect irrespective of ethnicity but associated to a manual workers social categories 
(see also Figure 15 bottom map). 

 

 
Figure 15: see Figure 14 caption, corresponding spatial components (top is the 
horizontal axis of Figure 14) 
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Figure 15 shows an apparent spatial pattern associated with the above description of 
the variable effects: Figure 15 (top) opposes the centre, non white Caucasian 
identified above, to the outskirt of the district and more the north-west and a large 
area at the East, (bottom) shows a north south divide (younger manual workers in 
the south with more care provided to). 
 
4.4.3 FCAk in relation to a model 
With the FCAk it is also possible to perform a correspondence relative to a model. 
Here an example where the observed proportions are modelled by the aggregated 
values at Ward level. As similar to analysing the residuals from a model, the type of 
analysis, here, is highlighting OAs which do not follow the Ward aggregated model. 
In Figure 16 (bottom panel) can be seen the very few (large spread of the percentile 
legend) OAs which departs strongly from that model (in brown). The variable 
component associated to this “outliers” pattern is not very different from was 
described before (here one dimension) indicating that the departure from the model 
is more “quantitative” than “qualitative”. 
  
> STOA.FCAk.MOA.Ward <- FCAk(STOA,E=MOA.Ward/sum(MOA.Ward)) 
> summary(STOA.FCAk.MOA.Ward,testvar=0.1) 
 +++ FCA-   model(E=)   ++  3 modes+++   
     ++ Contingency Table  STOA   2439 7 39  ++  
     -----Total Percent Rebuilt---- 98.57719 %  
     ++ Percent of lack of   model(E=)   rebuilt  ++  98.57719 %  
                    selected pctoafc >  0.1 %  total=  96.85047  
                -no- --Sing Val--   --ssX-- --Global Pct--  --FCA-- 
vs111              1     0.695282 0.5695688       84.87425 84.87425 
2439 vs111 7 39    3     0.035160 0.4847447        0.21705  0.21705 
7 vs111 2439 39   10     0.163823 0.5325014        4.71196  4.71196 
7 vs111 2439 39   11     0.085116 0.5325014        1.27196  1.27196 
7 vs111 2439 39   12     0.066459 0.5325014        0.77547  0.77547 
7 vs111 2439 39   13     0.047314 0.5325014        0.39304  0.39304 
7 vs111 2439 39   14     0.043218 0.5325014        0.32793  0.32793 
7 vs111 2439 39   15     0.040730 0.5325014        0.29127  0.29127 
7 vs111 2439 39   16     0.037365 0.5325014        0.24512  0.24512 
7 vs111 2439 39   17     0.031459 0.5325014        0.17376  0.17376 
7 vs111 2439 39   18     0.028583 0.5325014        0.14344  0.14344 
39 vs111 2439 7   49     0.104617 0.5008396        1.92157  1.92157 
39 vs111 2439 7   50     0.041012 0.5008396        0.29531  0.29531 
39 vs111 2439 7   51     0.036322 0.5008396        0.23163  0.23163 
39 vs111 2439 7   52     0.035073 0.5008396        0.21598  0.21598 
39 vs111 2439 7   53     0.034018 0.5008396        0.20318  0.20318 
39 vs111 2439 7   54     0.033001 0.5008396        0.19121  0.19121 
vs222             55     0.038515 0.0183176        0.26044  0.26044 
7 vs222 2439 39   64     0.024561 0.0050178        0.10591  0.10591 
 
 ++++               ++++  
 Shown are selected  over  121  PT  with pct FCA > 0.1 %  
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Figure 16: First principal tensor of the FCAk in relation to the ward model expressing 
85% of the departure from that model. (top: the horizontal spread is artificial as only 
one dimension is displayed). The time component is expressing an average over the 
7 years, so is not displayed.  
 
 
Notice the strong extremum effect illustrated by the quantile legend of the spatial map of 
figure 16; this expresses very few but quite extreme negative values (in brown), dispersed 
mainly far from the inner city and associated with the presence of few  (as a not the 
generality for these areas) of young (18 to 26 years old: age26) Asian, Caribbean, and African 
ethnics (eth11, eth14, eth17) on benefit or unemployed (soc5). 
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4.4.4 FCAk for domain interactions 
This approach is similar to the Burt table analysis but in using a multiway context. So 
far, we have analysed multiway interactions between very different modes: space, 
time, variables, but with in the variables different domains can be “separated”: 
health-realted with hea, lti , hlt and pro, socio-demographic  with age, sex, soc , eth 
and car. The variable “transport to work” can be health related but also socio-
demographic related and was not used here to simplify. 
 
> spaDom01.FCAk=FCAk(spaDom01) 
> summary(spaDom01.FCAk) 
+++ FCA-  complete independence  ++  3 modes+++   
     ++ Contingency Table  spaDom01   2439 20 14  ++  
     -----Total Percent Rebuilt---- 98.94027 %  
     ++ Percent of lack of  complete independence  rebuilt  ++  95.20483 %  
                    selected pctoafc >  0.5 %  total=  86.7174  
                 -no- --Sing Val--   --ssX-- --Global Pct--  --FCA-- 
vs111               1     1.000000 1.2836955       77.90010       NA 
2439 vs111 20 14    3     0.189772 1.0420572        2.80545 12.69441 
2439 vs111 20 14    4     0.054540 1.0420572        0.23173  1.04854 
2439 vs111 20 14    5     0.046467 1.0420572        0.16820  0.76110 
20 vs111 2439 14   17     0.101154 1.0206284        0.79708  3.60673 
20 vs111 2439 14   18     0.064391 1.0206284        0.32299  1.46148 
20 vs111 2439 14   19     0.043422 1.0206284        0.14688  0.66462 
14 vs111 2439 20   31     0.302685 1.1780322        7.13706 32.29453 
14 vs111 2439 20   32     0.162238 1.1780322        2.05043  9.27801 
14 vs111 2439 20   33     0.126284 1.1780322        1.24232  5.62137 
14 vs111 2439 20   34     0.097632 1.1780322        0.74254  3.35991 
14 vs111 2439 20   35     0.093354 1.1780322        0.67889  3.07193 
14 vs111 2439 20   36     0.081693 1.1780322        0.51988  2.35242 
14 vs111 2439 20   37     0.074683 1.1780322        0.43450  1.96605 
14 vs111 2439 20   38     0.062426 1.1780322        0.30358  1.37368 
14 vs111 2439 20   39     0.047397 1.1780322        0.17500  0.79185 
14 vs111 2439 20   40     0.044972 1.1780322        0.15755  0.71289 
14 vs111 2439 20   41     0.041032 1.1780322        0.13115  0.59345 
vs222              50     0.066577 0.0429777        0.34529  1.56239 
14 vs222 2439 20   80     0.051006 0.0164032        0.20266  0.91704 
14 vs222 2439 20   81     0.042127 0.0164032        0.13825  0.62555 
vs333              99     0.062754 0.0239564        0.30678  1.38815 
14 vs333 2439 20  129     0.040258 0.0093509        0.12625  0.57129 
 
 ++++               ++++  
 Shown are selected  over  91  PT  with pct FCA > 0.5 % 
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Figure 17: Principal tensor n°3 associated to marginal spatial: overall (for all OAs) 
domain interaction (socio-demographic and health related) in 2001 
 
Among the 22% of variability that are linked to the lack of independence between 
the domains of spatial, health and socio-economic description of the data, 12% of it 
reflects an overall spatial effect (average spatial effect) with associations, on the 
positive side of the axis in Figure 17, of old people, without a car, potentially on 
benefit or unemployed, not in a good health or in a fairly good health needing a lot 
of health care and in a long term illness, as opposed to relatively young, with more 
than 1 car, professionals an non-manual workers, in good health with no need of 
care. Notice a tendency for this latter to happen for white and black African more 
than the reverse, whilst other ethnic groups and particularly the British or Irish or 
other white can be “equally” in each side. 
 
Nonetheless and independently to the health domain the most part of these 22% of 
lack of independence, are to be found expressed within the tensor n°31 (Figure 18) 
representing 32% of these 22% and showing a strong association as we have seen 
before of Asian and African ethnicity along with on benefits or unemployed, young 
with no car in the city centre (brown zones) and on the outskirt of the city in few 
places towards the south east of the district. The north part of the district (in dark 
blue) pointing out more wealth among the elder and eldest of the population more 
likely from British or Irish or other white origins. 
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Figure 18: Principal Tensor n°31 of the FCAk 
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Figure 19: Principal Tensor n°32 of the FCAk 
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Figure 20: Principal Tensor n°17 of the FCAk 
 
Within the same part of the decomposition (a two-way analysis once contracted by 
the marginal health domain), the tensor n°32 (Figure 19) expressing 9% of lack of 
independence shows the social grade spatial effect, opposing manual less skilled  
workers (soc4) in the city center and the west of the district to the non- manual 
workers (soc1 and sco2) in the north and eastern parts. This analysis can be done 
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with time as fourth mode to be able to capture some evolution of these spatial 
associations within and between the domains. 
 
5 Discussion and conclusion 
This paper has applied an extended range of methods related to correspondence 
analysis to a (micro-) simulation allowing rich representations of the socio-
demographic structure of a city, as it is now and as it may be expected to evolve into 
the future.  It is typical of simulations of this type that substantial volumes of data 
are generated – in this case, an array of 2439 areas with 39 attributes and 7 time 
periods gives more than half a million counts for the analysis.  Detection of trends 
and patterns in a dataset of this type is a non-trivial challenge, but can potentially be 
valuable in pointing to substantive change (which may also have policy relevance) 
and also be suggestive of the function, and in some case perhaps the malfunction, of 
the underlying models. 
 
Starting with a simple correspondence analysis, we found that a representative pair 
of characteristics – social class and health – are far from spatially independent.  In 
addition to a strong association between professional occupations and good health, 
and between the unemployed and socially inactive with poor health, a notable 
tendency was detected in the failure of the higher social grades to report health 
status.  This was extended to a multiple correspondence analysis in which a group of 
eight attributes from the Moses microsimulation model were combined 
simultaneously.  This appeared to show associations not just between health and 
social status but also indicators such as lack of car ownership, membership of ethnic 
minority groups and stage in the family lifecycle.  Altogether this model appears to 
provide a multidimensional assessment of neighbourhood quality, or perhaps even 
‘deprivation’, across the city of Leeds.  Map-based representations of this indicator 
(Figure 5) show a typical in-out pattern of location quality.  By comparing an MCA 
model at a finer spatial scale (LSOA) against a model of independence at a higher 
spatial scale (wards) it was also possible to represent homogeneity against multiple 
criteria.  This analysis is suggestive that the more spatially aggregated simulations of 
the earlier Moses implementations (e.g., Birkin et al, 2006) will benefit significantly 
from further disaggregation to a neighbourhood scale. 
 
The power of a multi-way analysis was seen through the incorporation of both 
spatial scale and temporal evolution alongside spatial variations in multiple 
attributes.  The patterns of spatial variation in ‘deprivation’ and social grade 
appeared to be robust in relation to both scale and time, and indeed it was possible 
to suggest a composite map of neighbourhood quality across the entire horizon of 
the simulation (Figure 15).  However the analysis also seemed to show a progressive 
reduction in the differentiation between areas during the course of the simulation, 
and this may be indicative of a failure to fully incorporate local migration 
preferences in the version of the MSM that has been considered here.  Thus, for 
example, Jordan et al. (2011) have suggested the addition of segregation rules in the 
style of Schelling to improve the movement model here.  This trend was seen more 
clearly in the inner suburbs of the city than the surrounding towns (see Figure 12: 
inner suburb wards number are 4, 33, 2, 5, 14, 9, 30, 18, 27, 29 and 11) but this is 
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perhaps not unreasonable.  Recent trends suggest relatively low migration rates 
within the city itself, while the process of demographic ageing and the associated 
social adjustments (e.g., reductions in household size, car ownership and so on) will 
likely be more pronounced in the outlying towns and villages. 
 
In a final set of investigations, the health variable was again isolated for special 
attention within the multi-way framework.  This appeared to present some fresh 
perspectives on the question of health geographies – in effect a synoptic view of 
‘healthy spaces’ abstracted from both scale and time (Figure 18).  Such analysis could 
be thought-provoking and instructive when considering indicators of provision of 
health care – both current and planned – and might also be usefully extended to 
other domains such as housing or education. 
 
 
6 References 

Ballas, D., & Clarke, G. (2000). GIS and microsimulation for local labour market policy 
analysis.  Computers, Environment and Urban Systems, 24, 305 –330. 

Ballas, D., Clarke, G., Dorling, D., Eyre, H., Thomas, B., and Rossiter, D. (2005) 
‘SimBritain: A Spatial Microsimulation Approach to Population Dynamics.  
Population, Space and Place, 11, 13-34. 

Birkin, M.H. Clarke, M. (1987) Comprehensive models and efficient accounting 
frameworks for urban and regional systems. In Griffith, D., and Haining, R. (Eds)  
Transformations through space and time, Martinus Nijhoff, The Hague, 169-195. 

Birkin, M., Turner, A., and Wu, B. (2006) A synthetic demographic model of the UK 
population: Methods, progress and problems. In: Regional Science Association 
International British and Irish Section, 36th Annual Conference, The Royal Hotel, St 
Helier, Jersey, Channel Islands. 

Birkin, M.H., Townend, P., Turner, A., Wu, B. and Xu, J. (2009) MoSeS: A Grid-enabled 
spatial decision support system. Social Science Computing Review, 27, 4, 493-508 

Birkin, M.H. and Clarke, M. (2011) Spatial microsimulation models: A review and 
glimpse into the future.  In: J. Stillwell, M. Clarke (Eds.), Population dynamics and 
projection methods. Understanding population trends and processes, Vol. 4 Springer, 
Dordrecht, pp. 193–208 

Dray, S. and Dufour, A.B. (2007) The ade4 Package: Implementing the Duality 
Diagram for Ecologists. Journal of Statistical Software, vol. 22, no. 4, p. 120 

Escofier, B. (1984) Analyse factorielle en référence à un modèle. Application à 
l’analyse de tableaux d’échanges. Revue de Statistique Appliquée, vol. 32, no. 4, pp. 
25–36. Retrieved July 24, 2012, from 
http://www.numdam.org/item?id=RSA_1984__32_4_25_0 



NCRM Publications: Working papers 

 38 

Gatrell, A.C., Popay, J. and Thomas, C. (2004) Mapping the determinants of health 
inequalities in social space: can Bourdieu help us? Health & Place, vol. 10, no. 3, pp. 
245–257.  

Greenacre, M.J. (2007) Correspondence Analysis in Practice, CRC Press. 

Hermes, K. and Poulsen, M. (2012) A review of current methods to generate 
synthetic spatial microdata using reweighting and future directions. Computers, 
Environment and Urban Systems, vol. 36, no. 4, pp. 281–290.  

Jordan, R., Birkin, M.H. and Evans, A. (2011) Agent-Based Simulation Modelling of 
Housing Choice and Urban Regeneration Policy. In: Bosse, T., Geller, A., Jonker, C.M. 
(Eds.), Multi-Agent-Based Simulation XI, Lecture Notes in Computer Science. Springer 
Berlin Heidelberg, pp. 152–166. 

Lebart, L., Morineau, A. and Warwick, K.M. (1984) Multivariate descriptive statistical 
analysis: correspondence analysis and related techniques for large matrices. Wiley. 

Leibovici, D.G. and El Maâche, H. (1997) Une Décomposition en Valeurs Singulières 
d’un Elément d’un Produit Tensoriel de k Espaces de Hilbert Séparables. Compte 
Rendus de l’Académie des Sciences I, 325(7), 779–782. 

Leibovici, D.G. (2010) Spatio-Temporal Multiway Data Decomposition Using Principal 
Tensor Analysis on k-Modes: The R Package PTAk. Journal of Statistical Software, 
34(10), pp.1–34. Available at: http://www.jstatsoft.org/v34/i10. 

Leibovici, D.G. and Jackson, M. (2011) Multi-scale Integration for Spatio-Temporal 
Ecoregioning Delineation. International Journal of Image and Data Fusion, 2(2): 105-
119 

Leibovici, D.G. and Birkin, M.H. (2013) Geocomputational Perspectives for Entropic 
Variations of Urban Dynamics. Geographical Analysis (submitted) 

Le Roux, B., Rouanet, H., Savage, M. and Warde, A. (2008) Class and Cultural Division 
in the UK. Sociology, vol. 42, no. 6, pp. 1049–1071.  

Nenadic, O. and Greenacre, M .(2007) Correspondence Analysis in R, with Two- and 
Three-dimensional Graphics: The ca Package. Journal of Statistical Software, vol. 20, 
no. 3, pp. 1–13. Available at:  http://www.jstatsoft.org/v20/i03 

Murtagh, F. (2005) Correspondence Analysis And Data Coding With Java And R. CRC 
Press. 
 
Openshaw, S. (1983) The modifiable areal unit problem. Concepts and Techniques in 
Modern Geography (CATMOD), 38, Geo Books Norwich,UK. 
 
Orcutt, G. (1957). A new type of socio-economic system. Review of Economics & 
Statistics, 58, 773–797. 

http://www.jstatsoft.org/v34/i10
http://www.jstatsoft.org/v20/i03


NCRM Publications: Working papers 

 39 

 
Procter, K., Clarke, G., Ransley, J., and Cade, J. (2008). Micro-level analysis of 
childhood obesity, diet, physical activity, residential socio-economic and social 
capital variables: Where are the obesogenic environments in Leeds? Area, 40(3), 323 
–340. 
 
R Development Core Team (2009). R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-
07-0, URL http: //www.R-project.org/. 

Savage, M. (2010) (Focus Article) The Politics of Elective Belonging. Housing, Theory 
and Society, vol. 27, no. 2, pp. 115–161 (with discussions) 

Smith, D. M., Clarke, G. P., Ransley, J., and Cade, J. (2006). Food access & health: A 
microsimulation framework for analysis. Studies in Regional Science, 35(4), 909–927. 

Statistics Canada. (2009). ModGen developers guide. Online at 
http://www.statcan.gc.ca/microsimulation/modgen/modgen-eng.htm 

Tanton, R., McNamara, J., Harding, A., and Morrison, T. (2009). Small area poverty 
estimates for Australia’s Eastern Seaboard in 2006. In A. Zaidi, A. Harding, & P. 
Williamson (Eds.), New frontiers in microsimulation modelling (pp. 79 –96). Farnham: 
Ashgate. 

Nakaya, T., Fotheringham, A. S., Clarke, G., & Ballas, D. (2007). Retail modelling 
combining meso & micro approaches. Journal of Geographical Systems, 9, 345–369. 

Townend, P., Xu, J., Birkin, M.H., Turner, A. and Wu, B. (2009) Modelling and 
Simulation for e-Social Science. Philosophical Transactions of the Royal Society A, 
367, 2781-2792 

Van Imhoff, E. and Post, W. 1998 Microsimulation methods for population 
projection. Popul. Engl. Select. 10, 97–138. 

Wu, B. M., and  Birkin, M.H. (2012) Agent-Based Extensions to a Spatial 
Microsimulation Model of Demogaphic Change. In: A.J. Heppenstall  et al. (eds) 
Agent-Based Models of Geographical Systems, Springer Sciences Business Media 
,347-360 

7 Appendix 
The 10 variables in the article and used in the MoSes data simulation, are description in the 
codebook of the 2001 Individual Licensed SAR Version 2.5, www.ccsr.ac.uk/sars.: “The 
2001 Individual Licensed SAR (IL-SAR) is a 3 per cent sample and contains over 1.75 
million records. It contains a full range of census topics on individuals and summary 
information about households and the new information collected on qualifications, caring and 
religion. Geographical information is given down to Government Office Region.” 
For each variable is presented: - the labelling of categories, the variable name in the SAR 
with its definition - the values, with possible recoding used in this article in a table extracted 
from the SAR document with percentages given in the SAR (as is or a sum for some 

http://www.statcan.gc.ca/microsimulation/modgen/modgen-eng.htm
http://www.ccsr.ac.uk/sars
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categories for recoded variables). 
 
age<code>   age0 Age of respondent 
group code Percentage 
<=18 18 21.34% 
18-26 26 17% 
26-44 44 23% 
44-64 64 23.59 % 
>64 80 15.07% 
 
sex<value>  sex Sex of the respondent 
Value Label Percentage 
1 Male 48.65% 
2 Female 51.35% 
 
soc<value>  hrsocgrd social grade of the household reference person 
Value Label Percentage 
-9 Not applicable(not in a hhd, student living away, hrp not 16 ) 8.20% 
1 A/B Professional Middle managers 22.16% 
2 C1 All other non-manual workers 24.90% 
3 C2 All skilled manual workers 16.21% 
4 D All semi-skilled and unskilled manual workers 18.53% 
5 E On benefit/unemployed 10.00% 
 
car<code>  car0 Number of cars owned or available for use in the household  
Value code Label Percentage 
-9 0 Not applicable (not in a household) 1.79% 
0 0 No car 19.44% 
1 1 1 car 41.30% 
2 2 2 cars 29.14% 
3 2 3 cars or more 8.33% 
 
eth<code>  ethw Ethnic group for England and Wales reclassified in 5 groups 
Value code Label Percentage 
-9 -9 Not applicable (Scot/NI) 12.65% 
1 3 British 76.47% 
2 3 Irish 1.06% 
3 3 Other White 2.24% 
4 14 White and Black Caribbean 0.39% 
5 17 White and Black African 0.13% 
6 11 White and Asian 0.31% 
7 17 Other Mixed 0.26% 
8 11 Indian 1.73% 
9 11 Pakistani 1.20% 
10 11 Bangladeshi 0.47% 
11 11 Other Asian 0.40% 
12 14 Black Caribbean 0.94% 
13 14 Black African 0.81% 
14 14 Other Black 0.16% 
15 17 Chinese 0.38% 
16 17 Other Ethnic Group 0.37% 
 
hea<value>   health Self-assessment for general health in the last 12 months 
Value Label Percentage 
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-9 Not applicable (student living away) 0.97% 
1 Good 67.84% 
2 Fairly good 21.95% 
3 Not good 9.24% 
 
lti<value>  llti Limited long term illness 
Value Label Percentage 
-9 Not applicable (student living away) 0.97% 
1 Yes 18.27% 
2 No 80.76% 
 
hlt<code>   hhlthind Household health and disability indicator 
Value code Label Percentage 
-9 0 Not applicable (not in a household) 1.79% 
0 0 Noone in hhd lt-ill or in poor health 63.89% 
1 1 Hhd member lt-ill or in poor health 34.32% 
 
pro<value>  provcare Number of hours (unpaid) care provided per week 
Value Label Percentage 
-9 Not applicable (student living away) 0.97% 
1 Provides no care 89.12% 
2 Proves 1-19 hours care 6.68% 
3 Provides 20-49 hours care 1.12% 
4 Provides 50 or more hours care 2.11% 
 
trw<code>  tranwrk0– transport to work 
Value code Label Percentage 
-9 -9 Not applicable (not aged 16 to 74 or not working or student) 53.81% 
1 1 Work mainly from home 3.77% 

2 3 Underground metro light rail(EW&S) or tram(E&W) or 
tube(S) 1.20% 

3 3 Train 1.80% 
4 3 Bus minibus or coach 3.90% 
5 6 Motor cycle scooter or moped 0.46% 
6 6 Driving a car or van 24.73% 
7 6 Passenger in a car or van 3.26% 
8 6 Taxi or minicab 0.27% 
9 9 Bicycle 1.18% 
10 9 On foot 5.30% 
11 9 Other 0.25% 
12 6 Car or van pool for NI only 0.07% 
 
 


	NCRM working paper cover.pdf
	CA_MCA_FCAk_MoSes_NCRMpaper.docx.pdf

