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Abstract 

Residential mobility is a key mechanism in the evolution of local population size and structure and is 
of importance to policy makers tasked to provide resources and services. However, while the broad 
spatial and compositional characteristics of (aggregate) migration flows are fairly well understood, a 
greater understanding of the more personal (individual-level) characteristics of movers and non-
movers, for instance their neighbourhood satisfaction, household income and/or plans for a future 
moves, is essential if we are to fully understand the processes and patterns behind residential 
mobility and immobility. This paper exploits a bespoke commercial data set, Acxiom’s Research 
Opinion Poll (ROP), for the analysis of individual residential mobility behaviour across the life-course. 
In doing so, it uncovers some interesting associational patterns specifically related to some of the 
characteristics of movers vis-à-vis stayers that have, until very recently, been seriously understudied 
due to the lack of suitable data. However, since the analysis draws on a commercial data set hitherto 
unused for population analysis, the first part of the paper is concerned with investigating whether 
there is a practical need for sampling weights, designed to account for the unequal probabilities of 
selection in a sample for which the user has no prior information on the sampling design/strategy 
employed. The comparison of like-for-like weighted and unweighted binary logistic regression 
models suggests a good deal of stability and reliability across the data, but particularly for the model 
estimates derived from the pooled (combining 2005, 2006, 2007) ROP data, where the effect size 
and directional relationships are in close agreement. 

 The substantive analytical focus in the second part of the paper capitalises on the confidence 
demonstrated in utilising pooled data, and the associated practical advantages gained with 
increased sample size and an inherently flexible data source, to explore how the complex and 
interlinked micro-level characteristics of movers and non-movers vary according to an individual’s 
life-course stage. One important conclusion from this analysis relates to the relative unimportance 
of what are traditionally thought of as labour market characteristics. In contrast, however, 
characteristics associated with the housing market are found to be of great substantive relevance.  

The paper suggests such findings are likely to occur as a result of measuring movers as a single 
homogenous group, irrespective of the distance travelled between origin and destination residence. 
Moreover, a focus on the more some of the less commonly observed behaviours/characteristics of 
(non)movers uncovers results worthy of attention. Future plans to move are found to be negatively 
associated with mobility, especially for those in their early adulthood, something which, at first sight, 
appears to contradict the cumulative inertia hypothesis. Furthermore, across the life-course, greater 
neighbourhood satisfaction is found to be consistently and rather strongly associated with those 
who have recently moved as opposed to those who remained in situ. Yet interestingly, all things 
being equal, a positive additional effect is associated with homeowners with a negative additional 
effect for renters regardless of type. The paper concludes by suggesting that reliable approximations 
for directional associations can be drawn from the ROP without the need for sampling weights; and 
calls for the analysis presented here to be extended, both technically and analytically, through the 
use of a multilevel statistical framework.    
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1 Introduction 

This paper focusses on modelling the behaviour of those who change their usual address and 

become movers over an observation period vis-à-vis those who remain in the same location during 

that period. When movement takes place over a relatively short distance and typically does not 

involve a change of job, it is termed residential mobility; whereas a longer-distance movement, 

often involving change of job as well as change of usual residence, is frequently distinguished as 

being an internal migration, especially when it crosses an administrative boundary (Cadwallader, 

1992). The microdata that is the focus of the modelling reported here comes from a commercial 

organisation, Acxiom Ltd., and the initial aim of the paper is to outline and apply a technique, 

namely survey raking, that allows us to investigate potential distortions in model-based estimates, 

due to survey nonresponse bias, by accounting for the unequal probabilities of selection in a sample 

for which the user has little detailed information about the sampling design/strategy employed 

(Lumley, 2010). 

In order to investigate the sensitivity of model-based estimates to survey nonresponse bias we have 

chosen a strategy of calibrating eight paired like-for-like binomial logistic regression models, four 

weighted and four unweighted, in order to compare the relative difference of the estimated odds 

ratios as well as the (dis)similarities in the magnitude and direction of associations both between 

and across all eight model pairings. The results demonstrate improved confidence in our unweighted 

estimates, particularly when the Acxiom data are pooled. The paper then proceeds to a more in-

depth analysis, providing evidence of how patterns of demographic, socio-economic and 

lifestyle/behavioural characteristics of movers/stayers vary according to stage in the life-course, an 

overwhelmingly important phenomenon itself as is evidenced by the initial (un)weighted binomial 

logistic regressions.  Before the model findings are presented in Sections 4 and 5, a short overview is 

provided on factors motivating mobility from the research literature (Section 2.1), micro modelling is 

distinguished from macro modelling (Section 2.2) and the data and methods used  in the analyses 

are introduced (Section 3).    

2 Background 
2.1  Motivations for residential mobility and immobility 

Residential mobility is something that will affect almost all of us at some point in our lifetime. Of the 

three demographic processes (i.e. fertility, mortality and migration), household migration within the 

country usually has the largest impact on local area population size and composition (Bogue, 1969; 

Nam et al., 1990; Rees et al., 2009; Poston and Bouvier, 2010). Moreover, beyond the simple change 

in numbers, residential mobility has the ability to transform the demographic character and 
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structure of populations, in some cases affecting real change to the social, cultural, physical and 

economic characteristics of an area. With this in mind, it is clear that the measurement and analysis 

of movers and non-movers, and their respective behaviours and characteristics, is a hugely 

important task. After all, as Rees et al. (2009: 1) suggest, such details are “at the heart of decisions 

around policy development, resource allocation and service delivery, both nationally and locally”. 

Indeed, research exploring the decision-making processes and experiences of movers stretches right 

back to seminal works by Thomas (1938) and Rossi (1955). While the theoretical and empirical 

analyses presented in these early pioneering works have been tested, rethought and developed, 

time and time again, the fundamental study of mobility and immobility, in equal measure, remains 

essential to the sub-disciplines of demography and population geography (Courgeau and Lelievre, 

2006; Cooke, 2011). 

Residential mobility and immobility are complex and multifaceted phenomena. Yet, broadly 

speaking, we can think of the mobility event, the change of address, as being largely driven by 

certain push and pull factors whose effects are further conditioned by the seemingly selective nature 

of the individual’s socio-demographic, socio-economic, and behavioural/lifestyle characteristics. 

Push factors can include determinants such as: loss/change of job; changes in family or household 

structure (requiring more/less space); or low availability of social and life partners (Clark and 

Dieleman, 1996; Poston and Bouvier, 2010; Hedman et al., 2011). Pull factors, on the other hand, 

can include, for example: raised opportunities for employment, education, or income; the lure of a 

more satisfying lifestyle and associated consumption possibilities; or the desire to live in an area 

with others who have common life experiences and group-specific services, such as ethnicity, social 

group or sexual orientation (Bowes et al., 1997; Champion et al., 1998; Poston and Bouvier, 2010; 

Morrison and Clark, 2011). Of course these push and pull factors have been used, at least in part, to 

explain many of the clear and persistent patterns of residential mobility at various scales in the 

United Kingdom (UK), including the process of the urban-rural shift/counterurbanisation (Rees, 

1989; Stillwell et al., 1992; Champion, 2005a; Dennett and Stillwell, 2008), gentrification and 

increased city centre living (Boddy, 2007), and increasingly large student flows into university towns 

and cities around the UK (Champion, 2005b; Smith, 2009). Yet, while the broad spatial and 

compositional characteristics of migration flows are fairly well understood, a greater understanding 

of the more personal characteristics of movers and non-movers, from socio-demographic to income 

and lifestyle variables, is essential if we are to fully understand the processes and patterns behind 

residential mobility and immobility.  
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The micro-level dimensions commonly associated with greater mobility propensities include 

demographic variables such as: age, which acts as a rather consistent proxy for certain life-course 

transitions that are known to increase/decrease the likelihood of making a residential move (Rogers 

and Castro, 1981; Bates and Bracken, 1987; Warnes, 1992; Champion et al., 1998; Champion, 2005b; 

Stillwell, 2008; Dennett and Stillwell, 2010); gender1, with its strong ties to family formation, social 

mobility and labour market behaviours (Fielding, 1998; Atkins and Fotheringham, 2002; Fielding, 

2011; 2012); and ethnicity, which itself has its own cultural and racial dimensions (Stillwell and Duke-

Williams, 2005; Large and Ghosh, 2006; Finney and Simpson, 2008; Simpson and Finney, 2009; 

Stillwell and Hussain, 2010).  There are also social variables such as: tenure, where for example, 

private renters tend to be more mobile than other tenure types for a number of interrelated reasons 

(Rossi and Shlay, 1982; Boyle, 1993; Champion et al., 1998; van Ham and Feijten, 2008); and socio-

economic class, with greater immobility associated with the more traditional blue collar classes and 

greater mobility with the professional classes (Fielding 2007; 2012). Detailed reviews of the 

traditional socio-demographic dimensions associated with selective residential mobility can be found 

in Champion et al. (1998), Bailey and Livingston (2005) and Fielding (2012). Reviews and analysis of 

the more subjective/personal characteristics of movers and non-movers, for instance 

neighbourhood satisfaction, household income and plans for future moves, are, it appears, less 

commonplace. However, recent studies have started to explore these potentially rich areas of 

research (Rabe and Taylor, 2010; Coulter et al., 2011, 2012; Findlay and Nowok, 2012). 

2.2 Micro-level approaches to the modelling of residential mobility and immobility  

The modelling of migration is often divided according to dichotomous approaches: micro-level and 

the macro-level (Stillwell and Congdon, 1991). The latter approach, which is not the focus here, is 

largely concerned with analysing aggregate population stocks and migrant flows with a broad 

interest in identifying the significance of explanatory variables including unemployment rates, 

environmental conditions, housing and labour markets, origin/destination population size or 

quantifying the frictional effect of distance (Wilson, 1967; 1970; Stillwell, 1978; Fotheringham, 1983; 

1991; Fotheringham et al., 2001; Flowerdew, 2010). Micro-level approaches, in contrast, are largely 

concerned with analysing individual person or household level factors, behaviours and 

characteristics, which in the case of the research presented here, are associated with the 

decision/ability to move as opposed to remaining in place. That said, we know from our own 

personal experiences, as well as a good deal of theoretical and empirical study (Massey, 1995; 

                                                           
1 The term sex is used in this paper when discussing population statistics so as to be consistent with ONS 
terminology. However, from an analytical perspective we use gender to refer to the social and cultural 
dimensions of being male/female. 
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Courgeau and Lelievre, 2006; Bailey and Livingston, 2008; van Ham and Clark, 2009; Morrison, 2011; 

Champion, 2011; Fielding, 2012), that residential mobility and immobility are inextricably linked to 

complex structural processes that interact across various aggregate scales from the neighbourhood 

through to the broader region, nation, and beyond. Consequently, it is important for analyses, even 

at the micro level, to carefully consider the role that social and spatial context plays in shaping and 

interacting with an individual’s likelihood to stay or move. Further considerations related to the 

importance of correctly modelling individual and aggregate behaviour patterns, as well as their 

interactions, are offered in the conclusion of this paper. 

3 Data and Methods 

3.1  Acxiom’s Research Opinion Poll: Potential, limitations and corrections 

The analyses presented in due course make use of commercial data derived from Acxiom’s six-

monthly Research Opinion Poll (ROP), a source of data hitherto unused for the analysis of residential 

mobility. The ROP is a large lifestyle survey carried out across Great Britain (GB) which is, essentially, 

a voluntary paper-based (although increasingly distributed via the internet) survey that is delivered 

through direct mail twice a year, in September and January, in order to capture detailed micro-level 

characteristics of the respondents. During the mid-2000s, the survey contained a series of questions 

relevant to the study of residential mobility in GB. Indeed, through the inclusion of current and 

previous addresses (at full postcode) as well as the timing of the previous move and an indication for 

the planning of a future move, the ROP is a source of data that have considerable potential for 

research examining the individual demographic, socioeconomic and lifestyle characteristics of those 

who have moved address in the past, those who planned to move in the future and those who had 

remained in situ (Table 1). Beyond this, the ROP’s very large relative sample size allows one to 

analyse/model movers and stayers and determine geographical patterns of residential mobility at 

relatively detailed spatial scales including the district level and below. 

Whilst the size of the ROP is advantageous, with the raw sample containing approximately 350k 

responses a year for the period of study (2005-07), the survey data certainly does not come free of 

problems. Excluding the responding household’s current postcode address, which is cleaned and 

prepared using the latest Postal Address File (PAF), the ROP data are delivered in raw format 

(Thompson et al., 2010). As such, concerns surrounding missing values and/or ‘impossible’ values are 

left for the end user to decide upon. In this research, for reasons of practicality, and given the 

benefit the very large raw sample size, list-wise deletion (synonymous with complete case analysis) 

is employed following what was a significant period of data preparation and cleaning. A detailed 

description of the major issues associated with the initial data preparation and cleaning of the ROP’s 
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key migration related variables (previous address and duration at address) is provided by Thomas et 

al. (2012). Employing a theoretically and statistically sound multiple imputation method for item 

(question) nonresponse was considered, however, a number of theoretical (combining multiply 

imputed datasets with sampling weights for unequal probabilities of selection) and practical (sheer 

size of the raw samples and the magnitude of ‘missingness’ within them) obstacles prevented their 

use in this analysis. More simple single imputation methods were avoided due to their potential for 

introducing further bias into the sample (Bethlehem et al., 2011) and their tendency to 

underestimate the uncertainty of the imputed/introduced data, leading to, in the worst case 

scenario, a type I error (Little, 2008). Given the scale of missing values and/or ‘impossible’ values in 

the raw ROP data, the cleaned complete case samples for the January 2005-07 ROPs, while still 

comparatively large, are reduced to approximately a third of the size of the raw ROPs (Table 6).  

Table 1. Variables obtained from the Acxiom ROP for the years containing previous address data 

Key survey variables 
January 

2005 
September 

2005 
January 

2006 
January 

2007 
September 

2007 

Current address (postcode)      

Sex      

Age      

Ethnic group      
Marital status      

Occupation      

Education      

House price      

Income       

Home type      

Home ownership      

Household size      

Number of cars      

Time of move      

Previous address (postcode)      

Like neighbourhood      

Neighbourhood improved      

Future move      

Perhaps unsurprisingly given its form as a voluntary postal survey, the ROP sample contains inherent 

individual- and area-level biases on a number of important characteristics including: age, sex, ethnic 

group, migrant status, income group and geography (even at the regional level) (Thompson et al., 

2010; Thomas et al., 2012). Such biases can be expected to be driven, to a large extent, by survey 

nonresponse and errors in the sampling frame. Unfortunately, due to commercial sensitivity, we are 

not privy to the number of survey forms that were distributed by Acxiom, thus not allowing 
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calculation of basic response rates; nor is it possible to obtain information on the addresses of those 

who failed to provide a response. If such data were available it would not only have been possible to 

evaluate response rates but, through the use of auxiliary small area population statistics and/or 

geodemographics, it may have been possible to develop a reasonably detailed picture of the sorts of 

people who did not respond to the survey and further explore the response propensities. In the 

absence of such information a simple strategy of descriptive bivariate benchmarking against official 

statistics was employed, the results of which are discussed in Thomas et al. (2012). While the 

general directional relationships appeared quite reassuring, both in terms of district level migration 

patterns and various micro-level mover/stayer characteristics, the benchmarking exercise did reveal 

sample selection biases according to both individual and area characteristics. In extreme cases, such 

findings lead to a situation where any reported results are open to critiques of being simple artefacts 

of the sampling; and therefore not generalizable to the wider population. 

Taking these concerns into account, and using auxiliary population data (Appendix A), it is possible to 

adjust key ROP sample distributions (e.g. age, sex, geography, (non-)mover status) so as to match 

those of the GB population. Sample raking, also known as raking ratio estimation (Kalton, 1983) or 

iterative proportional fitting (IPF) (Deming and Stephan, 1940; Deming, 1943), is a technique that 

repeatedly adjusts sampling weights in an attempt to rebalance the survey response counts to 

known population totals. The weights can be used to derive more reliable estimates of aggregate 

population parameters, including measures of migration and potentially intra/inter-district 

population flows2, as well as offering a degree of protection against potential distortions in model-

based estimators by accounting for the unequal probabilities of selection known to be in the ROP 

sample.  The raking procedure is explained in the next section.   

3.2  The survey raking procedure 

Ideally we would like to construct a complete multi-way cross-tabulation of relevant variables, 

wherein we create a multi-dimensional table with known population counts for each cell value 

before rebalancing the survey values to the population counts. This technique, known as post-

stratification,  is multiplicative and therefore if we wanted to reweight our survey by post-stratifying 

according to say age (15 categories), sex (2 categories), region (10 categories) and ethnic group (5 

categories) we would need a multi-dimensional population table with 1,500 known population cells 

(15age∗2sex∗10reg∗5eth = 1,500). Such a level detail could be problematic if not impossible, given the 

                                                           
2 The potential for exploring estimated intra/inter-district migration flows by individual socio-economic and 
lifestyle characteristics is currently being explored by the authors. 



11 
 

lack of available/sufficient population data and the likelihood that some demographic and 

geographical sub-groups (i.e. combinations of variable categories) do not exist in the sample.  

Raking, on the other hand, can be thought of as broadly similar to fitting a loglinear model for the 

probability of being observed in a particular cell of the complete multi-way cross-tabulation of 

variable categories given the probabilities for the known marginal distributions (Little and Wu, 

1991). Therefore, using the example above, we would only require a marginal adjustment table with 

32 marginal counts (15age+2sex+10reg+5eth = 32); however, the limitations associated with the 

available demographic sub-groups in the sample still need to be considered. Raking is practically very 

useful as it allows us to use marginal counts from different data sources; for instance, one could use 

the mid-year population estimates (MYE) to derive accurate GB population estimates of age, sex and 

geographical region for those aged 18 and over, and use the Annual Population Survey (APS) to 

derive timely 12 month residential mover counts, also for the GB population aged 18 plus. That said, 

marginal adjustments will be most effective when they are good predictors of both survey non-

response and particularly of the proposed model outcome, in this case whether an individual moves 

or remains in place (Little and Vartivarian, 2005; Little, 2008). The marginal population counts 

derived from different sources used in this analysis can be found in Appendix A.  

As mentioned above, access to detailed documentation of the ROP sampling strategy is not 

available, however, from what we do know, the ROP does not appear to follow a particularly 

complex design. Rather it is an attempt at generating a very large, while still broadly accurate, 

sample with postcode identifiers and as such we must, and in fact can only, assume that the ROP is 

equally weighted (i.e. each individual within the sample carries the same weight). Therefore, in the 

case of the unweighted ROP data, the individual weights 𝑤𝑖, where 𝑖 = 1, … , 𝑛, are equal to 1, thus 

𝑤𝑖 = 1 for each 𝑖. These initial survey weights will then be modified, using the raking/IPF algorithm, 

to reflect the unequal probabilities of selection in the ROP sample when compared to the known 

marginal population totals. The resulting vector of weights can then be used within our analyses, be 

they descriptive or model based in nature, with the purpose of providing a degree of protection, 

through the incorporation of known population data, against potential unequal response related 

distortions.  

Drawing on previous examples (Deming and Stephan, 1940; Bishop et al., 1975; Simpson and 

Tranmer, 2005; and Battaglia et al., 2009), the raking algorithm can now be defined. With the 

requirement to rake on a number of ROP variables, we can imagine a multidimensional table where 

the sum of the initial 𝑤𝑖 in cell 𝜃 is defined as 𝑤𝜃 with a set of levels 𝑞 = 1, … , 𝑠 varying for each of 

the known population control totals 𝑇, with 𝑇𝜃𝑞 corresponding to cell 𝜃. The algorithm proceeds 
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iteratively, modifying the initial weights 𝑤𝜃 and thus producing new multidimensional totals 𝑚𝜃 that 

are superscripted with the number of the step. The first step of the first iteration uses the initial 

sample cell totals and fits these to the initial marginal levels (marginal subtotals) in order to derive 

our first modified estimates:  

𝑚𝜃
(1) = 𝑤𝜃

(0) 𝑇𝜃
𝑤𝜃1

(0)                                                                                           (1) 

This process is repeated for all of the 𝑞 levels where the first cycle (𝑟) of the required 𝑠 steps is 

completed: 

𝑚𝜃
(𝑠) = 𝑚𝜃

(𝑠−1) 𝑇𝜃𝑠
𝑚𝜃𝑠−1

(𝑠−1)                                                                                   (2) 

 In general, at the 𝑡th step, where 𝑡 − 𝑞 is a multiple of 𝑠, the modified estimate is defined as: 

𝑚𝜃
(𝑡) = 𝑚𝜃

(𝑡−1) 𝑇𝜃𝑞
𝑚𝜃𝑞

(𝑡−1)                                                                                   (3) 

Iteration occurs until the 𝑟th cycle, where 𝑡 = 𝑟𝑠, and where the estimate 𝑚𝜃
(𝑟𝑠) satisfies a 

predetermined convergence criterion 𝛿𝑟, for example 0.1 or 0.001, at which point a further 

complete 𝑟 cycle fails to modify any cell by more than this pre-specified criterion (Bishop et al., 

1975: 85), thus: 

|𝑚𝜃
(𝑟𝑠) −𝑚𝜃

(𝑟𝑠−𝑠)| < 𝛿𝑟                                                                               (4) 

With the desired level of accuracy achieved, the final modified sampling weights are obtained, ready 

for use within the analyses. 

3.3  A worked example of the raking procedure 

To aid understanding of the process, a simple two-dimensional example of the procedure, using real 

data, can now be worked. The two variables used in the example are gross annual household income 

and household tenure. The marginal population totals for gross annual household income are 

weighted estimates derived from the 2006-2007 Survey of English Housing with the marginal totals 

for household tenure coming from the 2006 General Household Survey, the totals were adjusted so 

that, when summed, they agreed with the ONS Mid-2005 Population Estimates for individuals aged 

18+ in Great Britain (𝑁 =  45,775,200). The sample data used are from the complete case pooled 

ROP (𝑛 = 348,953) (combining all cases from the January 2005, 2006, and 2007 ROPs) where each 

individual is equally weighted (i.e. each individual has a weight equal to 1, 𝑤𝑖 = 1 for each 𝑖). In the 
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initial two-dimensional table (Table 2) the row totals refer to the marginal population control totals 

for income while the column totals refer to the marginal population control totals for tenure. Each 

cell value (𝜃) is the sum of the sampled individuals (𝑖), where 𝑤𝑖 = 1, whose characteristics match 

the corresponding margins.   

Table 2. Two-dimensional example of raking (IPF) procedure: Initial values  

 
Tenure → Own home Council rent 

Housing 
association rent Private rent 

Income ↓ 
 

32,972,701 4,829,504 3,342,199 4,630,796 

Up to £9,999 3,432,360 29,912 21,103 9,685 10,714 

£10,000-£19,999 9,111,355 59,701 15,183 7,946 11,584 

£20,000-£29,999 8,420,083 55,734 5,771 3,456 7,538 

£30,000-£39,999 8,813,724 42,506 2,049 1,319 4,421 

£40,000-£49,999 6,891,122 25,719 685 373 2,281 

£50,000 plus 9,106,556 28,740 257 184 2,092 
N.B. Italicised control totals indicate population control totals (or agreement with population control totals). 

The first step (𝑠) of the first cycle (𝑟) is described in Equation 1 and involves fitting the initial cell 

totals (𝑤𝜃) to the corresponding marginal (row) population income totals (𝑇𝜃) (Table 3).   

Table 3. Two-dimensional example of raking (IPF) procedure: Fitting to marginal population income 
totals (cycle 1, step 1) 

 
Tenure → Own home Council rent 

Housing 
association rent Private rent 

Income ↓ 
 

35,589,051.62 3,746,095.84 2,006,873.27 4,433,179.27 

Up to £9,999 3,432,360.00 1,437,655.81 1,014,270.21 465,488.65 514,945.32 

£10,000-£19,999 9,111,355.00 5,761,401.96 1,465,224.47 766,823.00 1,117,905.57 

£20,000-£29,999 8,420,083.00 6,472,984.54 670,247.85 401,382.18 875,468.43 

£30,000-£39,999 8,813,724.00 7,448,775.27 359,067.91 231,142.30 774,738.52 

£40,000-£49,999 6,891,122.00 6,099,276.16 162,448.16 88,457.17 540,940.51 

£50,000 plus 9,106,556.00 8,368,957.87 74,837.24 53,579.97 609,180.93 

At the end of the first step, the counts in each cell will sum to the known control totals for income 

but will not sum to the column totals control totals for tenure. It follows therefore that the second 

and step of the first cycle is to fit the now modified cell totals (𝑚𝜃) to the corresponding marginal 

population totals for tenure (Table 4). 
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Table 4. Two-dimensional example of raking (IPF) procedure: Fitting to marginal population income 
totals (cycle 1, step 2) 

 
Tenure → Own home Council rent 

Housing 
association rent Private rent 

Income ↓ 
 

32,972,701.00 4,829,504.00 3,342,199.00 4,630,796.00 

Up to £9,999 3,952,686.56 1,331,965.68 1,307,607.24 775,213.73 537,899.91 

£10,000-£19,999 9,671,617.92 5,337,849.02 1,888,981.95 1,277,048.78 1,167,738.17 

£20,000-£29,999 8,444,155.67 5,997,119.17 864,090.19 668,452.34 914,493.97 

£30,000-£39,999 8,558,300.71 6,901,174.06 462,913.92 384,938.89 809,273.84 

£40,000-£49,999 6,572,682.32 5,650,884.19 209,429.78 147,314.47 565,053.88 

£50,000 plus 8,575,756.82 7,753,708.88 96,480.91 89,230.80 636,336.23 

With the second step completed, the cell values have been modified so as to match the tenure 

margins. However, as is clear in Table 4, they now no longer match with the population margins for 

income (Table 2). As is described in Equation 3, we continue this process, raking on each dimension, 

until we reach the 𝑟th cycle and the estimate (𝑚𝜃
(𝑟𝑠)) satisfies the convergence criterion (𝛿𝑟), in this 

example 0.001. After 14 cycles, the desired level of accuracy was achieved with the results shown in 

Table 5. 

For this worked example, we can obtain the final modified sampling weights for each sampled 

individual through a simple calculation: dividing the cell total 𝑤𝜃 (the sum of the sampled individuals 

(𝑖), where the original sampling weights are specified as equal, 𝑤𝑖 = 1, whose characteristics match 

of the given cell 𝜃) (Table 2), by the final modified cell total 𝑚𝜃
(𝑟𝑠) (Table 5).  

Table 5. Two-dimensional example of raking (IPF) procedure: Convergence criterion satisfied (cycle 
14, step 2) 

 
Tenure → Own home Council rent 

Housing 
association rent Private rent 

Income ↓ 
 

32,972,701.000 4,829,504.000 3,342,199.000 4,630,796.000 

Up to £9,999 3,432,360.000 1,104,293.728 1,176,796.269 691,839.824 459,430.180 

£10,000-£19,999 9,111,355.000 4,880,074.750 1,874,650.842 1,256,782.743 1,099,846.666 

£20,000-£29,999 8,420,083.000 5,873,861.845 918,697.467 704,764.512 922,759.176 

£30,000-£39,999 8,813,724.000 7,030,366.743 511,902.949 422,123.293 849,331.014 

£40,000-£49,999 6,891,122.000 5,883,273.340 236,686.480 165,097.524 606,064.657 

£50,000 plus 9,106,556.000 8,200,830.594 110,769.994 101,591.104 693,364.308 

We are effectively dividing the now modified cell frequency between its members in the sample. In 

this example, a homeowner with a gross annual household income of £30,000-£39,000 has a 



15 
 

sampling weight approximately equal to 165.397 (7,030,366,743 ÷ 42,506 = 165.397), and therefore 

is estimated to represent 165.397 individuals in the 18+ GB population3. 

3.4 Binary logistic regression for survey data 

Binary logistic regression models are used in the first instance as they allow for us to correctly model 

associations when the dependent variable follows a binomial distribution with possible values 0 or 1. 

Given that we are interested in exploring the individual characteristics of movers versus non-movers, 

our dependent variable is a 0-1 indicator (0 = non-mover, 1 = mover). The binary logistic regression 

model (𝑌 = 0,1) with multiple predictor variables  𝑥1,𝑥2, … , 𝑥𝑘 can be written as:  

𝑙𝑜𝑔𝑖𝑡[𝜋(𝒙)] = ln�
𝜋(𝒙)

1− 𝜋(𝒙)� = 𝛽0 + 𝛽1𝑥1 + ⋯+ 𝛽𝑘𝑥𝑘                   (5) 

where 𝜋(𝒙) is the conditional probability of 𝑦 occurring (𝑌 = 1 (in this case, mover)) given the vector 

of observed predictor variables, 𝒙. In the models presented here, 𝛽0 represents the constant term, 

which contains all of the reference categories associated with each predictor variable. 𝛽1, … ,𝛽𝑘 are 

the logistic regression coefficients, where 𝛽𝑘  gives the change in the log odds of 𝑌 = 1 for a given 

category 𝑘 within a predictor variable when compared to the odds that  𝑌 = 1 for the reference 

category within the said variable. Once the model is fitted, 𝜋(𝒙) can be recovered from the log scale 

through the antilogit function: 

𝜋�(𝒙) =
exp (𝛽̂0 + 𝛽̂1𝑥1 +⋯+ 𝛽̂𝑘𝑥𝑘)

1 + exp (𝛽̂0 + 𝛽̂1𝑥1 + ⋯+ 𝛽̂𝑘𝑥𝑘)
                                               (6) 

By exponentiating the estimated parameters, 𝜷�, a more meaningful interpretation is provided 

where, for the variables modelled here, exp�𝛽̂� (the odds ratio) represents the change in the 

estimated ratio of the odds of 𝑌 = 1 for a given category within a predictor variable, when 

compared to the odds that  𝑌 = 1 for the reference category. For a simple random sample, the 

binary logistic regression coefficients and standard errors are estimated using maximum likelihood 

based on the binomial distribution (Agresti, 2002). The likelihood function for logistic regression with 

a binomial dependent variable can be written as: 

𝐿(𝜷|𝑥) = �𝜋(𝑥𝑖)𝑦𝑖
𝑁

𝑖=1

[1 −  𝜋(𝑥𝑖)]1−𝑦𝑖                                                     (7) 

where: 

                                                           
3 If necessary, the probability of selection for each sampled individual can be calculated as the reciprocal of the 
sampling weight (e.g. 1/165.397 = 0.006046).  
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𝜋(𝑥𝑖) =
exp(𝑥𝑖𝜷)

[1 + exp(𝑥𝑖𝜷)]                                                                                      (8)         

However, when sampling weights are included, the use of maximum likelihood estimation is no 

longer possible due to the fact that the probabilities of selection for the sample observations are no 

longer equal (Heeringa et al., 2010). Consequently, an alternative method of pseudo-maximum 

likelihood estimation (Binder, 1981; 1983) can be used which allows for complex sample 

characteristics to be modelled correctly by making use of the sampling weights (𝑤𝑖) of the observed 

sample values (𝑦𝑖) and the estimated 𝜋�(𝑥𝑖) values (Heeringa et al., 2010). Therefore, the weighted 

pseudo-likelihood function for logistic regression with a binomial dependent variable is defined as: 

𝑃𝐿(𝑩|𝑋) = �{𝜋(𝑥𝑖)𝑦𝑖
𝑛

𝑖=1

∙ [1 −  𝜋(𝑥𝑖)]1−𝑦𝑖}𝑤𝑖                                        (9) 

where: 

𝜋(𝑥𝑖) =
exp(𝑥𝑖𝑩)

[1 + exp(𝑥𝑖𝑩)]                                                                                     (10)          

In line with Heeringa et al. (2010) the parameters 𝜷 are changed to 𝑩 and now represent finite 

population parameters, which are the weighted function of the observed sample values (𝑦𝑖) and the 

estimated 𝜋�(𝑥𝑖) values. To be clear, the unweighted models shown here use maximum likelihood 

estimation with the weighted models drawing on the pseudo-maximum likelihood approach to 

estimation. 

When comparing the weighted models to the unweighted models, careful consideration must be 

given to the balance between the reduced precision in the weighted model (inflated standard errors) 

which is strongly related to highly variable weights, and the protection the weights can offer against 

distortions in the model-based estimators due to the fact that the unequal probabilities of selection, 

and some of the potential distortions, are known as a function of the design variables (DuMouchel 

and Duncan, 1983; Pfeffermann, 2007; Snijders and Bosker, 2012). Broadly speaking, “if the sampling 

weights are ignorable, in the sense that the estimate is valid with or without the weights, the 

weighted estimates will be less precise” (Lumley, 2010: 105 [original emboldening]). In such a case 

we can be relatively confident that the associational patterns that we derive are reasonably robust.  

4 Modelling Analysis 

4.1  Model specification  

While five separate ROP datasets are available in total, the results presented here are based on the 

January 2005, January 2006 and January 2007 surveys due to the consistency of their questions and 
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the variable detail for demographic, socio-economic, lifestyle, mobility and address information 

(Table 1). Replicate microdata models have been calibrated for different ROP samples (January 2005 

(𝑛 = 125,945), January 2006 (𝑛 = 50,686), and January 2007 (𝑛 = 172,322) as well as on the pooled 

data (𝑛 = 348,953) in order to explore data consistency. There are a number of apparent advantages 

to the increased sample size associated with the pooling of the ROP data, including: the potential for 

greater precision in our estimates; an increase in the migrant subsample; and the reduced risk of 

sparsity, wherein we have very small numbers within modelled (sub)groups4. That said, given the 

small (two-year) temporal variation in the sample, it is necessary to incorporate dummy variables 

(indicating which sample the respondent is member of) within the models so as to control for any 

unwanted influence associated with this variation.  

Table 6 provides a breakdown of the numbers of movers and non-movers in each data set as well as 

the percentage that moved. The numbers presented in Table 6 refer to the cleaned data, which 

contain records that provided usable answers to all the variables obtained for use in the analyses 

here.  

Table 6. Tabulation of residential mobility status for the selected ROP data sets 

Residential mobility 
status January 2005 January 2006 January 2007 Pooled 

Non-mover 121,551 49,711 168,337 339,599 

Mover 4,394 975 3,985 9,354 

% movers 3.49 1.96 2.37 2.68 

N 125,945 50,686 172,322 348,953 

The modelled binary response is non-mover (0) and mover (1); where movers are specified as 

individuals who have changed address in the 12 months prior to survey completion, providing full 

address details of their previous residence5, with non-movers making up the remainder of the cases. 

The predictor variables used in the models presented below include a number of the key 

demographic and socio-economic characteristics that previous studies have shown to be important 

in explaining residential mobility and immobility.  However, beyond this, a desire to explore some of 

the more subjective/personal and seemingly understudied characteristics of movers and non-

movers, for instance their geodemographic area characteristics, neighbourhood satisfaction, 

                                                           
4Sparsity is potentially important for future research too as there are plans to extend these models through 
the use of multilevel modelling, including cross-classified structures. There are potential concerns with the 
implementation of the cross-classified design associated with the precision of model estimates if the areal 
units in the cross-classification contain very small numbers of sampled individuals (Fielding and Goldstein, 
2006). By pooling the data, the risks reduce. 
5 While not used in this analysis, previous address data is used to define movers so that the definition matches 
that to be used in future analyses exploring variations in distance (postcode to postcode) moved.   
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household income and plans for a future move, offer a certain value-added dimension to this 

analysis and are thus included in the models. The rationale behind the choice of the reference 

category used for each explanatory variable varies; for ordinal categorical variables, the median 

value was used; while for nominal variables, the modal value in the sample and, occasionally, the 

most typical in the population was used.  

Following recommendations by Hosmer and Lemeshow (2000), for reasons of parsimony and model 

fit, only those predictors that had a bivariate association with the dependent variable at the p <0.25 

significance level were selected for inclusion in the multivariate analysis. The January 2005, January 

2007 and Pooled weighted models presented below use sampling weights that have been adjusted 

according to marginal population totals for age, sex, Government Office Region (GOR), and 

mover/non-mover status. Due to the relatively small sample size in the January 2006 ROP (especially 

for the mover sub-group, Table 6), the sampling weights designed for the January 2006 weighted 

model are limited to the use of population totals for age, sex and mover/non-mover status only. The 

inclusion of geography, even at the regional level, is not possible due to the nonexistence of sampled 

individuals in certain cells of the required multi-dimensional adjustment table6. Theoretically we can 

rake on as many variables as we have population data for; however, the size of the sample limits us 

to a select few in practice. See Appendix A for details on the sources of the population data and a full 

breakdown of the population counts for each marginal population total.  

In terms of evaluating model goodness-of-fit (GOF), a number of statistics are provided at the 

bottom of Tables 7-10. The deviance statistics measure how much unexplained information there is 

after a model is fitted and are approximate to the residual sum of squares in a standard multiple 

regression (Field et al., 2012). A smaller deviance statistic suggests fewer unexplained observations 

within the model. The improvement (𝛸2), is the difference between the null deviance (constant only 

model) and the residual deviance (fitted model), both of which follow a Chi-square distribution 

making it possible to calculate the significance of this value. The effect of adding/removing variables 

on the model fit can also be analysed in this manner by checking the improvement in Model 2 (full 

suite of variables) when compared to Model 1 (reduced variables). Finally, the Akaike information 

criterion (AIC), allows us to check the improvement in the model fit while effectively penalising the 

model that contains more explanatory variables (Agresti, 2007; Field et al., 2012). Without 

penalising, the simple addition of a further variable would increase the model fit while failing to 

account for the additional complexity the added variable brings.  

                                                           
6 There are 484 cells in the multi-dimensional adjustment table for age (11), sex (2), geography (11), and 
mover/non-mover status (2) and only 44 cells in the adjustment table used for the January 2006 ROP sample. 
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4.2 Regression Modelling Results 

As stated in the introduction, this paper is focussed, at least from a substantive point of view, on 

exploring the variations in the associational patterns of demographic, socio-economic and 

behavioural/lifestyle characteristics for movers when compared to non-movers. However, in order 

to improve confidence in the results drawn from such analyses, a major focus on their reliability, in 

the face of what are known sample biases, is required. With this in mind, the paper is also concerned 

with comparing estimates derived from like-for-like weighted and unweighted binary logistic 

regression models. Accordingly, the results presented here are in two sub-sections, the first of which 

offers a very brief analytical discussion of the core model findings but is primarily focussed on the 

important task of assessing the reliability of our estimates through a comparison of weighted and 

unweighted model results. The second section builds on what is observed in the first, and therefore 

attempts to take the analytical focus of the models a stage further by exploring how the intricate, 

and interlinked, micro-level behaviours and characteristics of movers and non-movers vary 

according to their stage in the life-course.  

4.3 Comparing unweighted and weighted main effects model results 

The results of the unweighted and weighted main effects models for each ROP sample can be seen 

in Tables 7-10 and Figures 1-4. For each tabular comparison (Tables 7-10), the relative difference in 

the odds ratios (in percentage terms) are provided in order for us to assess the extent to which the 

weighted and unweighted models diverge. It should be noted that the estimated odds ratio for the 

constant has no real substantive analytical value; however, for comparative purposes, in terms of 

measuring the relative difference, it is included in Tables 7-10. The plotting of the results in Figures 

1-4 greatly helps in assessing not only the (dis)similarities in the directional patterns, but also in 

comparing the size of effects and therefore the relative substantive importance, above and beyond 

the simple statistical significance, that certain characteristics may have over others in terms of their 

associated relationship with residential (im)mobility in GB. To be clear, an estimated coefficient (𝛽̂) 

that falls to the right of the dashed line (marking zero – i.e. no difference) suggests that individuals 

with this characteristic are, ceteris paribus, more likely to have moved than those with the reference 

characteristic of a given categorical predictor. Estimated coefficients that fall to the left of the line, 

therefore, suggest a move is less likely than it is for the reference. 

 

 



20 
 

Table 7. January 2005 ROP: Main effects comparison and relative difference 

Predictor January 2005 unweighted January 2005 weighted 
Relative 

difference 

 
B SE Odds B SE Odds (%) 

Constant -4.495 0.103 0.011 -3.885 0.125 0.021 -83.903 

Age (ref: 45-49) 
      18-19 2.435 0.178 11.418 2.370 0.190 10.700 6.287 

20-24 2.094 0.081 8.120 2.096 0.102 8.136 -0.197 

25-29 1.601 0.075 4.958 1.616 0.085 5.033 -1.503 

30-34 1.181 0.073 3.257 1.188 0.081 3.281 -0.747 

35-39 0.704 0.074 2.022 0.706 0.081 2.025 -0.138 

40-44 0.293 0.077 1.340 0.305 0.083 1.357 -1.227 

50-54 -0.161 0.086 0.851 -0.183 0.091 0.833 2.117 

55-59 -0.228 0.086 0.796 -0.271 0.091 0.762 4.273 

60-64 -0.409 0.097 0.664 -0.384 0.103 0.681 -2.481 

65-69 -0.410 0.106 0.664 -0.340 0.113 0.712 -7.224 

70-74 -0.421 0.117 0.656 -0.393 0.125 0.675 -2.831 

75-79 -0.693 0.144 0.500 -0.683 0.151 0.505 -0.952 

80+ -0.903 0.178 0.405 -0.826 0.186 0.438 -8.024 

Gender (ref: Female) 
      Male -0.157 0.036 0.854 -0.135 0.047 0.874 -2.264 

Ethnic group (ref: white) 
      Asian 0.249 0.113 1.283 0.062 0.134 1.063 17.118 

Black 0.560 0.131 1.751 0.334 0.164 1.396 20.263 

Other -0.077 0.112 0.926 -0.162 0.150 0.851 8.112 

Marital status (ref: single) 
      Married 0.010 0.050 1.010 0.157 0.058 1.170 -15.911 

Living with partner 0.450 0.051 1.568 0.558 0.059 1.748 -11.478 

Divorced/separated 0.543 0.057 1.721 0.562 0.064 1.755 -1.956 

Widowed 0.240 0.099 1.271 0.170 0.110 1.185 6.780 

Occupation (ref: Higher managerial administrative and professional occupations) 
  Not economically active 0.003 0.035 1.003 0.031 0.041 1.032 -2.846 

Routine and manual 
occupations 0.061 0.040 1.063 0.118 0.047 1.126 -5.888 

Intermediate occupations 0.024 0.039 1.024 -0.066 0.047 0.936 8.592 

Annual gross household income (ref: £20,000-£29,999) 
   Up to £9,999 0.115 0.058 1.122 -0.004 0.067 0.996 11.217 

£10,000-£19,999 0.064 0.047 1.066 0.004 0.055 1.004 5.835 

£30,000-£39,999 -0.089 0.053 0.915 0.052 0.062 1.054 -15.156 

£40,000-£49,999 0.109 0.047 1.115 0.024 0.056 1.025 8.073 

£50,000 plus 0.022 0.039 1.022 0.069 0.047 1.072 -4.820 

Highest qualification (ref: 5 or more GCSEs) 
    No formal qualifications 0.152 0.034 1.165 0.179 0.040 1.196 -2.719 

2+ 'A' levels 0.144 0.035 1.154 0.143 0.042 1.153 0.088 

First degree and higher -0.099 0.039 0.906 -0.131 0.047 0.877 3.174 

Tenure (ref: Own home) 
      Council rent 0.039 0.057 1.173 0.168 0.067 1.183 -0.846 
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Housing association rent 0.281 0.068 1.324 0.236 0.082 1.266 4.363 

Private rent 0.752 0.045 2.122 0.732 0.054 2.080 1.978 

Type of home (ref: Semi-detached) 
     Detached 0.324 0.055 1.383 0.219 0.065 1.245 9.962 

Terraced 0.089 0.044 1.094 0.126 0.053 1.134 -3.725 

Bungalow 0.695 0.069 2.004 0.518 0.083 1.678 16.261 

Maisonette 0.169 0.111 1.185 0.209 0.133 1.233 -4.077 

Flat 0.520 0.054 1.682 0.512 0.067 1.669 0.728 

OAC Super-group level (ref: Typical traits) 
    Blue collar communities -0.133 0.051 0.875 -0.117 0.061 0.889 -1.613 

City living -0.172 0.082 0.842 -0.090 0.102 0.914 -8.562 

Countryside -0.021 0.061 0.980 -0.005 0.072 0.995 -1.579 

Prospering Suburbs -0.117 0.055 0.890 -0.115 0.067 0.892 -0.222 
Constrained by 
circumstances -0.036 0.056 0.965 -0.020 0.067 0.980 -1.577 

Multicultural -0.491 0.076 0.612 -0.429 0.094 0.651 -6.359 

Plan to move in next 12 months (ref: No) 
     Yes -0.040 0.047 0.961 -0.075 0.056 0.927 3.503 

Like your neighbourhood (ref: No) 
     Yes 0.441 0.060 1.555 0.389 0.074 1.476 5.067 

      Null deviance 38122 on 125944 df 
    Residual deviance 33639 on 124896 df 
    Improvement (𝛸2) 4482.644, df = 48 
    AIC 33737 
    N.B. 𝑛 = 125,945. 95% confidence intervals can be calculated as: coefficient (B) minus 1.96 * SE (lower boundary) and coefficient (B) plus 

1.96 * SE (upper boundary) where SE is the standard error. Underlined estimates are significant at the 95 per cent level. Relative differences 
in the odds ratios ≥20 per cent are underlined. The GOF summary measures relate to the unweighted model, such statistics are currently 
not incorporated in the R ‘survey’ (Lumley, 2012) package software for complex sample survey data analysis.   

The modelled results for the January 2005 ROP (Table 7 and Figure 1) are reassuring with the 

similarity in the direction and magnitude of the weighted and unweighted estimates immediately 

apparent.  Moreover, beyond the simple similarities, the coefficients of both models suggest 

relationships commonly cited in the literature (Section 2.1). Indeed, it appears that age (stage in life-

course) is, as we would expect, a very significant influence on the propensity to move, with the 

younger age groups having higher propensities to move than those in the older age categories. 

Other findings that suggest a substantively important relationship with mover/non-mover status can 

be found for marital status, with the likelihood of moving being far greater for those living with a 

partner and those that are divorced/separated than those that are single; and tenure, with renters 

having a far greater likelihood of moving than home owners. The Output Area Classification (OAC) 

functional geographies suggest varying propensities to move, however, in substantive terms, those 

living in multicultural neighbourhoods tend to be characterised by greater immobility than those 

living in areas that reflect more typical traits. Finally, it appears that greater neighbourhood 

satisfaction is associated with recent movers.  
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Figure 1. January 2005 ROP weighted and unweighted model estimates 

 

In terms of the stability between the model estimates, there are only three cases (the constant and 

Black ethnic group) where the relative difference in the estimated coefficient odds ratio has 

exceeded the 20 per cent level. However, for both the constant and Black ethnic groups, the 

directional patterns (+/-) remain in agreement. The models do present contradictory estimates, 

where one model suggests a positive/negative associational pattern in contrast to the other. These 

additional contradictory estimates are the household income groups “up to £9,999” and “£30,000-

£39,999”, yet in both cases, the contradictory estimates are statistically non-significant in the 

weighted model with the size of the standard errors suggesting that both estimates could easily have 

pointed to the same directional association suggested by the unweighted model. 
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Table 8. January 2006 ROP: Main effects comparison and relative difference 

Predictor January 2006 unweighted January 2006 weighted 
Relative 

difference 

 
B SE Odds B SE Odds (%) 

Constant -5.329 0.221 0.005 -3.672 0.257 0.025 -424.384 

Age (ref: 45-49) 
      18-19 1.523 0.316 4.585 1.428 0.338 4.169 9.062 

20-24 1.480 0.167 4.394 1.362 0.219 3.905 11.129 

25-29 1.245 0.149 3.474 1.101 0.179 3.008 13.403 

30-34 1.023 0.137 2.782 0.926 0.156 2.524 9.280 

35-39 0.600 0.132 1.822 0.560 0.144 1.751 3.909 

40-44 -0.012 0.144 0.988 -0.042 0.151 0.958 2.982 

50-54 -0.506 0.173 0.603 -0.476 0.181 0.621 -3.066 

55-59 -0.329 0.165 0.720 -0.335 0.173 0.715 0.616 

60-64 -0.382 0.183 0.682 -0.384 0.191 0.681 0.199 

65-69 -0.629 0.222 0.533 -0.666 0.228 0.514 3.674 

70-74 -0.469 0.225 0.626 -0.473 0.235 0.623 0.418 

75-79 -0.954 0.295 0.385 -0.886 0.306 0.412 -7.090 

80+ -0.541 0.279 0.582 -0.474 0.298 0.623 -6.944 

Gender (ref: Female) 
      Male -0.161 0.075 0.851 -0.269 0.091 0.764 10.194 

Ethnic group (ref: white) 
      Asian 0.248 0.218 1.281 0.085 0.278 1.089 14.982 

Black -0.042 0.350 0.959 -0.156 0.400 0.855 10.788 

Other 0.530 0.227 1.698 0.226 0.287 1.253 26.185 

Marital status (ref: single) 
      Married 0.151 0.110 1.163 0.125 0.127 1.133 2.593 

Living with partner 0.795 0.112 2.214 0.846 0.131 2.331 -5.302 

Divorced/separated 0.413 0.126 1.511 0.165 0.138 1.180 21.945 

Widowed 0.358 0.195 1.430 0.041 0.211 1.042 27.152 

Occupation (ref: Higher managerial administrative and professional occupations) 
  Not economically active 0.050 0.071 1.051 0.069 0.084 1.072 -1.984 

Routine and manual 
occupations 0.177 0.083 1.194 0.204 0.096 1.226 -2.697 

Intermediate occupations -0.107 0.078 0.898 -0.129 0.094 0.879 2.160 

Annual gross household income (ref: £20,000-£29,999) 
   Up to £9,999 0.049 0.107 1.050 -0.081 0.122 0.923 12.116 

£10,000-£19,999 0.006 0.088 1.006 -0.119 0.099 0.888 11.771 

£30,000-£39,999 -0.132 0.099 0.876 -0.032 0.113 0.969 -10.565 

£40,000-£49,999 -0.115 0.089 0.892 -0.240 0.104 0.787 11.802 

£50,000 plus 0.007 0.079 1.007 -0.004 0.092 0.996 1.058 

Highest qualification (ref: 5 or more GCSEs) 
    No formal qualifications 0.275 0.066 1.317 0.381 0.077 1.464 -11.162 

2+ 'A' levels 0.216 0.073 1.241 0.270 0.087 1.310 -5.515 

First degree and higher -0.104 0.083 0.901 -0.055 0.101 0.947 -5.037 

Tenure (ref: Own home) 
      Council rent 0.025 0.130 1.026 -0.074 0.154 0.928 9.506 
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Housing association rent 0.467 0.129 1.596 0.311 0.150 1.364 14.514 

Private rent 0.685 0.100 1.983 0.515 0.122 1.674 15.604 

Type of home (ref: Semi-detached) 
     Detached 0.165 0.105 1.179 -0.030 0.124 0.971 17.670 

Terraced 0.081 0.095 1.085 0.076 0.113 1.079 0.530 

Bungalow 0.483 0.129 1.621 0.313 0.149 1.368 15.580 

Maisonette 0.549 0.227 1.732 0.508 0.267 1.662 4.035 

Flat 0.780 0.118 2.182 0.762 0.149 2.142 1.846 

OAC Super-group level (ref: Typical traits) 
    Blue collar communities -0.122 0.112 0.886 -0.066 0.134 0.936 -5.707 

City living -0.239 0.178 0.788 -0.164 0.216 0.849 -7.817 

Countryside 0.176 0.118 1.193 0.229 0.141 1.257 -5.397 

Prospering Suburbs 0.063 0.107 1.065 0.084 0.127 1.087 -2.088 
Constrained by 
circumstances -0.152 0.125 0.859 -0.101 0.157 0.904 -5.278 

Multicultural -0.575 0.169 0.563 -0.613 0.201 0.542 3.737 

Plan to move in next 12 months (ref: No) 
     Yes -0.162 0.121 0.851 0.006 0.138 1.006 -18.293 

Like your neighbourhood (ref: No) 
     Yes 0.848 0.146 2.335 0.679 0.164 1.972 15.518 

        Null deviance 9635.5 on 50685 df 
    Residual deviance 8752.7 on 50637 df 
    Improvement (𝛸2) 882.834, df = 48 
    AIC 8850.7 
    N.B. 𝑛 = 50,686. 95% confidence intervals can be calculated as: coefficient (B) minus 1.96 * SE (lower boundary) and coefficient (B) plus 

1.96 * SE (upper boundary) where SE is the standard error. Underlined estimates are significant at the 95 per cent level. Relative differences 
in the odds ratios ≥20 per cent are underlined. The GOF summary measures relate to the unweighted model, such statistics are currently 
not incorporated in the R ‘survey’ (Lumley, 2012) package software for complex sample survey data analysis.   

The model results for the 2006 ROP (Table 8 and Figure 2) suggest that the comparability between 

the weighted and unweighted models is somewhat less impressive. However, this is not unexpected 

given the substantial (approx. 60 per cent) reduction in the sample size relative to the 2005 ROP. The 

general directional associations and patterns depicted in Figure 2 suggest that the substantive 

findings again appear to be fairly well reflected in both. As with the 2005 results, there is strong 

evidence of the important role that age (stage in life-course) plays on the likelihood of moving or 

staying, with the younger age groups being generally more likely to move than those in more elderly 

age groups. Again, as with the 2005 results, the likelihood of moving is found to be far greater for 

those living with a partner than those who are single. Additionally, those living in flats as well as 

those who rent privately or from a housing association, are on average, significantly more likely to 

have moved in the 12 months prior to the survey than those who live in semi-detached 

accommodation and those who own their property. As before, we also associate greater 

neighbourhood satisfaction with those who move residence as opposed to those who do not.  
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Figure 2. January 2006 ROP weighted and unweighted model estimates 

 

When thinking about the stability in the estimated odds ratios, and while accepting that the 

comparability between the estimates is less impressive than the January 2005 ROP, none of the 

observed contradictions should be considered particularly problematic. For the 2006 analysis, there 

are four cases where the relative difference in the estimated coefficient odds ratio exceeds the ±20 

per cent point (the constant, Other ethnic group, divorced/separated and widowed) but again the 

relative differences do not result in a disagreement with the direction (+/-) of the associations. There 

are contradictions in the models’ estimates, however, in all cases (detached housing; council rent; 

income up to £9,999, £10,000-£19,999, £50,000 plus; and planning to move), the substantive effects 

are very small and statistically non-significant in both models.  
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Table 9. January 2007 ROP: Main effects comparison and relative difference 

Predictor January 2007 unweighted January 2007 weighted 
Relative 

difference 

 
B SE Odds B SE Odds (%) 

Constant -5.061 0.109 0.006 -3.686 0.124 0.025 -295.792 

Age (ref: 45-49) 
      18-19 1.254 0.168 3.505 1.304 0.181 3.685 -5.148 

20-24 1.448 0.085 4.255 1.491 0.106 4.441 -4.358 

25-29 1.204 0.075 3.333 1.251 0.086 3.494 -4.842 

30-34 0.829 0.074 2.291 0.850 0.083 2.339 -2.130 

35-39 0.583 0.073 1.792 0.609 0.080 1.838 -2.595 

40-44 0.207 0.076 1.230 0.234 0.083 1.263 -2.731 

50-54 -0.040 0.084 0.961 -0.051 0.090 0.951 1.040 

55-59 -0.093 0.086 0.911 -0.097 0.092 0.907 0.457 

60-64 -0.045 0.090 0.956 -0.043 0.096 0.958 -0.238 

65-69 -0.150 0.107 0.861 -0.133 0.113 0.875 -1.696 

70-74 -0.246 0.125 0.782 -0.255 0.132 0.775 0.949 

75-79 -0.521 0.153 0.594 -0.478 0.166 0.620 -4.415 

80+ -0.853 0.189 0.426 -0.789 0.199 0.455 -6.686 

Gender (ref: Female) 
      Male 0.011 0.035 1.012 0.017 0.042 1.017 -0.530 

Ethnic group (ref: white) 
      Asian -0.235 0.116 0.791 -0.326 0.131 0.722 8.667 

Black -0.484 0.167 0.616 -0.506 0.198 0.603 2.166 

Other -0.230 0.139 0.794 -0.353 0.152 0.702 11.586 

Marital status (ref: single) 
      Married 0.058 0.054 1.060 0.129 0.061 1.138 -7.361 

Living with partner 0.545 0.054 1.724 0.606 0.060 1.833 -6.325 

Divorced/separated 0.443 0.064 1.557 0.454 0.071 1.575 -1.173 

Widowed 0.348 0.101 1.417 0.363 0.110 1.437 -1.436 

Occupation (ref: Higher managerial administrative and professional occupations) 
  Not economically active 0.170 0.034 1.185 0.187 0.037 1.206 -1.711 

Routine and manual 
occupations 0.019 0.036 1.019 0.026 0.039 1.026 -0.670 

Intermediate occupations 0.031 0.038 1.031 0.067 0.040 1.069 -3.681 

Annual gross household income (ref: £20,000-£29,999) 
   Up to £9,999 0.068 0.050 1.070 0.000 0.054 1.000 6.607 

£10,000-£19,999 0.042 0.041 1.043 0.014 0.045 1.014 2.767 

£30,000-£39,999 -0.045 0.049 0.956 -0.021 0.054 0.980 -2.507 

£40,000-£49,999 0.070 0.045 1.073 0.053 0.050 1.054 1.741 

£50,000 plus 0.071 0.039 1.074 0.079 0.043 1.082 -0.755 

Highest qualification (ref: 5 or more GCSEs) 
    No formal qualifications 0.149 0.033 1.160 0.181 0.036 1.198 -3.242 

2+ 'A' levels 0.074 0.036 1.076 0.065 0.039 1.068 0.819 

First degree and higher -0.129 0.041 0.879 -0.194 0.045 0.823 6.309 

Tenure (ref: Own home) 
      Council rent -0.281 0.069 0.755 -0.291 0.077 0.748 1.033 
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Housing association rent -0.129 0.077 0.879 -0.169 0.087 0.844 3.878 

Private rent 0.159 0.050 1.172 -0.029 0.061 0.972 17.112 

Type of home (ref: Semi-detached) 
     Detached 0.266 0.053 1.305 0.181 0.057 1.199 8.144 

Terraced 0.151 0.047 1.163 0.179 0.053 1.197 -2.849 

Bungalow 0.869 0.060 2.386 0.812 0.066 2.251 5.628 

Maisonette 0.276 0.122 1.318 0.240 0.134 1.271 3.535 

Flat 0.790 0.057 2.204 0.839 0.066 2.313 -4.975 

OAC Super-group level (ref: Typical traits) 
    Blue collar communities -0.259 0.056 0.772 -0.229 0.062 0.796 -3.058 

City living -0.255 0.083 0.775 -0.222 0.096 0.801 -3.340 

Countryside 0.197 0.059 1.218 0.278 0.065 1.320 -8.381 

Prospering Suburbs 0.084 0.052 1.087 0.154 0.058 1.166 -7.251 
Constrained by 
circumstances -0.178 0.062 0.837 -0.201 0.070 0.818 2.344 

Multicultural -0.271 0.076 0.762 -0.288 0.088 0.750 1.634 

Plan to move in next 12 months (ref: No) 
     Yes -0.345 0.054 0.708 -0.317 0.059 0.728 -2.807 

Like your neighbourhood (ref: No) 
     Yes 0.631 0.069 1.880 0.563 0.078 1.756 6.593 

        Null deviance 37899 on 172321 df 
    Residual deviance 35770 on 172273 df 
    Improvement (𝛸2) 2129.008, df = 48 
    AIC 35868 
    N.B. 𝑛 = 172,322. 95% confidence intervals can be calculated as: coefficient (B) minus 1.96 * SE (lower boundary) and coefficient (B) plus 

1.96 * SE (upper boundary) where SE is the standard error. Underlined estimates are significant at the 95 per cent level. Relative differences 
in the odds ratios ≥20 per cent are underlined. The GOF summary measures relate to the unweighted model, such statistics are currently 
not incorporated in the R ‘survey’ (Lumley, 2012) package software for complex sample survey data analysis.   

The results for the weighted and unweighted models using January 2007 ROP data (Table 9 and 

Figure 3) are more consistent than both of the previous data sets. The substantive patterns seen in 

the 2005 and 2006 ROPs reappear, with the greatest likelihood of mobility found for the youngest 

age groups and the greatest immobility in the eldest age groups. The importance of the type of 

accommodation is reemphasised with those living in flats or bungalows characterised by greater 

mobility rates, on average, than those who live in semi-detached accommodation. Marital status is 

also found to have a statistically significant and reasonably large effect on propensities to move with 

those living with their partner being particularly more likely to move than those who are single. 

Greater immobility is observed for those in Asian, Black and Other ethnic groups, when compared to 

those from White ethnic backgrounds. Again, as with the 2005 ROP findings, individuals living in 

multicultural neighbourhoods tend to be characterised by greater immobility than those living in 

areas characterised by more typical traits, with those living in blue collar communities and areas 

constrained by circumstances also characterised by particularly greater immobility. Greater 
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satisfaction with their neighbourhood and a lower likelihood of planning for a future move are also 

significantly associated with movers when compared to stayers.  

Figure 3. January 2007 ROP weighted and unweighted model estimates 

 

In terms of consistency in the model estimates, only the constant has a relative difference in the 

estimated coefficient odds ratio that exceeds the ±20 per cent mark. Moreover, the only example of 

a contradictory estimate is for private rent; however, the effects are very small in both models and 

the standard error in the weighted model crosses zero.  
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Table 10. Pooled (January 2005-07) ROP: Main effects comparison and relative difference 

Predictor Pooled unweighted Pooled weighted 
Relative 

difference 

 
B SE Odds B SE Odds (%) 

Constant -4.455 0.071 0.012 -3.262 0.081 0.038 -229.592 

Age (ref: 45-49) 
  

    
18-19 1.610 0.111 5.001 1.592 0.117 4.914 1.732 

20-24 1.726 0.054 5.616 1.724 0.068 5.607 0.159 

25-29 1.374 0.050 3.950 1.385 0.057 3.996 -1.150 

30-34 1.009 0.049 2.742 1.013 0.054 2.754 -0.446 

35-39 0.644 0.048 1.904 0.651 0.053 1.917 -0.683 

40-44 0.220 0.051 1.246 0.228 0.055 1.256 -0.801 

50-54 -0.156 0.056 0.856 -0.178 0.060 0.837 2.258 

55-59 -0.205 0.057 0.815 -0.244 0.061 0.784 3.798 

60-64 -0.268 0.061 0.765 -0.294 0.065 0.746 2.513 

65-69 -0.372 0.069 0.689 -0.397 0.073 0.672 2.438 

70-74 -0.433 0.078 0.649 -0.498 0.082 0.608 6.274 

75-79 -0.732 0.097 0.481 -0.767 0.103 0.464 3.513 

80+ -0.887 0.116 0.412 -0.891 0.122 0.410 0.445 

Gender (ref: Female) 
  

    
Male -0.089 0.023 0.915 -0.082 0.029 0.922 -0.700 

Ethnic group (ref: white) 
  

    
Asian -0.005 0.076 0.995 -0.149 0.087 0.862 13.406 

Black 0.025 0.097 1.025 -0.107 0.113 0.898 12.351 

Other -0.082 0.081 0.922 -0.156 0.097 0.855 7.175 

Marital status (ref: single) 
  

    
Married 0.066 0.034 1.069 0.148 0.039 1.159 -8.488 

Living with partner 0.549 0.034 1.732 0.636 0.039 1.890 -9.128 

Divorced/separated 0.492 0.040 1.635 0.495 0.044 1.640 -0.268 

Widowed 0.319 0.066 1.376 0.291 0.071 1.337 2.827 

Occupation (ref: Higher managerial administrative and professional occupations)   
Not economically active 0.139 0.022 1.149 0.165 0.024 1.180 -2.677 
Routine and manual 
occupations -0.015 0.024 0.986 -0.017 0.027 0.984 0.203 

Intermediate occupations -0.103 0.023 0.902 -0.121 0.026 0.886 1.779 

Annual gross household income (ref: £20,000-£29,999)    
Up to £9,999 0.085 0.035 1.088 -0.002 0.038 0.998 8.334 

£10,000-£19,999 0.051 0.029 1.052 0.007 0.032 1.007 4.324 

£30,000-£39,999 -0.034 0.033 0.966 0.046 0.036 1.047 -8.360 

£40,000-£49,999 0.043 0.030 1.044 -0.014 0.034 0.986 5.535 

£50,000 plus 0.051 0.026 1.052 0.077 0.029 1.080 -2.648 

Highest qualification (ref: 5 or more GCSEs)     
No formal qualifications 0.183 0.022 1.200 0.224 0.024 1.251 -4.203 

2+ 'A' levels 0.134 0.023 1.143 0.137 0.026 1.147 -0.346 

First degree and higher -0.123 0.026 0.884 -0.170 0.030 0.844 4.536 

Tenure (ref: Own home) 
  

    
Council rent -0.016 0.041 0.984 -0.051 0.045 0.950 3.425 
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Housing association rent 0.134 0.047 1.144 0.058 0.054 1.060 7.311 

Private rent 0.428 0.031 1.534 0.276 0.037 1.317 14.127 

Type of home (ref: Semi-detached) 
 

    
Detached 0.279 0.036 1.321 0.176 0.040 1.192 9.759 

Terraced 0.125 0.030 1.133 0.159 0.035 1.172 -3.467 

Bungalow 0.785 0.042 2.193 0.695 0.048 2.003 8.674 

Maisonette 0.261 0.077 1.299 0.262 0.087 1.299 -0.030 

Flat 0.676 0.037 1.966 0.704 0.044 2.021 -2.813 

OAC Super-group level (ref: Typical traits)     
Blue collar communities -0.180 0.036 0.835 -0.153 0.040 0.858 -2.768 

City living -0.228 0.055 0.796 -0.179 0.065 0.836 -4.980 

Countryside 0.109 0.040 1.115 0.176 0.045 1.192 -6.906 

Prospering Suburbs 0.002 0.035 1.002 0.056 0.041 1.057 -5.482 
Constrained by 
circumstances -0.103 0.039 0.902 -0.106 0.044 0.900 0.305 

Multicultural -0.406 0.051 0.667 -0.401 0.059 0.670 -0.435 

Plan to move in next 12 months (ref: No) 
 

    
Yes -0.152 0.033 0.859 -0.139 0.037 0.870 -1.302 

Like your neighbourhood (ref: No) 
 

    
Yes 0.560 0.043 1.750 0.489 0.049 1.631 6.791 

Data set (ref: January 2005) 
 

    
January 2006 -0.583 0.036 0.558 -0.610 0.041 0.543 2.677 

January 2007 -0.662 0.023 0.516 -0.768 0.027 0.464 10.061 

    
   

 Null deviance 86162 on 348952 df 
    Residual deviance 78866 on 348902 df 
    Improvement (𝛸2) 7295.825, df = 50 
    AIC 78968 
    N.B. 𝑛 = 348,953. 95% confidence intervals can be calculated as: coefficient (B) minus 1.96 * SE (lower boundary) and coefficient (B) plus 

1.96 * SE (upper boundary) where SE is the standard error. Underlined estimates are significant at the 95 per cent level. Relative differences 
in the odds ratios ≥20 per cent are underlined. The GOF summary measures relate to the unweighted model, such statistics are currently 
not incorporated in the R ‘survey’ (Lumley, 2012) package software for complex sample survey data analysis.   

The comparisons between the weighted and unweighted models for the January 2005, 2006, and 

2007 ROP samples suggest reasonable levels of reliability. We also observe impressive levels of 

comparability, in terms of the direction and magnitude of the associational patterns, across the 

different survey cross-section for: life-course, gender, marital status, tenure, type of home, 

occupational class, and neighbourhood satisfaction. Subsequently, a similar investigation of the 

pooled data (combining all cases from the January 2005, 2006, and 2007 ROPs) is performed in order 

to determine its reliability for further, and more sophisticated, analysis. That said, given the 

relatively small (two-year) temporal variation, the changes in residential mobility frequencies and 

overall sample sizes (Table 6), and the small but observable analytical variations between the ROP 

samples, it is deemed useful to incorporate dummy terms indicating for which sample respondents 

are member of. The inclusion of the dummy terms is designed to help to control for some of the 

unwanted influence associated with this inter-sample variation.  
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Figure 4. Pooled (January 2005-07) ROP weighted and unweighted model estimates 

 

The results from the pooled models (Table 10 and Figure 4) suggest an impressive level of 

agreement with only the constant exceeding the ±20 per cent level of relative difference in the 

estimated coefficient odds ratio. Moreover, where there are directional relationship disagreements 

in the models (i.e. Black ethnic groups and up to £9,999, £30,000-£39,999, £40,000-£49,999 income 

groups), the effects are found to be substantively small and statistically non-significant (with the 

standard errors crossing the zero, in most cases) in at least one of the comparative models. In terms 

of the most influential characteristics, the prominence of age (stage in life-course) for the propensity 

to move/stay is striking, with the common patterns associated with marital status, home type, 

neighbourhood satisfaction, neighbourhood type, and plans for a future move also revealed. It is 

also clear that the inclusion of the (nuisance) dummy indicators for each of the ROP samples is 

justified given that they are both statistically significant and have relatively large effect sizes.  

While the influence of nonresponse bias in the unweighted model results cannot be discounted, a 

reasonable degree of stability is observed both across and between the eight models. Furthermore, 

from an analytical point of view, the major associational patterns to do with the demographic, socio-

economic and behavioural/lifestyle characteristics of movers/non-movers are repeated across each 

model. Taking this and the substantive nature of this research into account, it is proposed that the 

pooled ROP data form the basis of all further analysis. Indeed, given the observed stability between 
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the unweighted and weighted model estimates for the pooled ROP data, it can now be argued, with 

greater confidence, that unweighted models drawing on raw data will provide us with reassuringly 

accurate substantive findings. With this in mind, and given the practical advantages of a significantly 

increased sample size and the inherent flexibility offered by the ROP, attention can now be focussed 

on a more detailed exploration of how the complex and interlinked micro-level behaviours and 

characteristics of movers and non-movers vary according to the stage in the life-course, an 

overwhelmingly important phenomenon itself as evidenced in the models above.   

5 Exploring the micro-level behaviours and characteristics of movers 
and non-movers across the life-course 

As has been observed in the models above, as well as in many previous analyses, age is a 

fundamental characteristic upon which the propensity to move, or remain in situ, is influenced. It 

has been mentioned already that age works as a rather consistent proxy for certain life-course 

transitions that are known to increase/decrease the likelihood of making a residential move. For 

instance, we can think of life-course transitions into adulthood associated with either a move from 

school to university or directly into employment, or into employment following higher education – 

all of which may necessitate a change of residence. The subsequent years for those aged in their 

early 30s to mid 40s, are commonly characterised by relatively sharp reductions in mobility and are 

generally considered the years of family formation and child rearing. The decline then reduces 

somewhat for the years 45-64, with more recent research associating the reduction with a transition 

from parenthood to ‘empty nesting’, prompting the desire, at least for some, to change residence in 

order to downsize (Wulff et al., 2010). Finally, for the transition into retirement and old age the 

picture is more mixed, with some small but noticeable recoveries in the mobility rate associated with 

the exit from the labour market, but with greater immobility as older age increases (Fielding, 2012). 

Finally, the mobility rate is observed to increase again, to some extent, for those in the eldest age 

groups, commonly associated with a need for closer proximity to family members and social/health 

services. 

Yet while we have a reasonably detailed understanding of these major demographic influences, 

there is surprisingly little understanding of how certain other characteristics, for instance 

neighbourhood satisfaction, household income and/or plans for a future moves, vary as we move 

along the major life-course trajectory. Therefore, four binomial logistic regression models (Table 11) 

have been specified and estimated with the purpose of exploring the variations in the associational 

patterns of demographic, socio-economic and behavioural/lifestyle characteristics of movers when 

compared to non-movers for four major life-course stages: 18-29, the transition into adulthood with 
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the associated high levels of mobility (Figure 5); 30-44, traditionally the stage of family formation 

and reductions in mobility (Figure 6); 45-64, a stage of reduced decline in mobility (Figure 7); and 

finally 65+, the transition into retirement and old age and relatively low propensities to move (Figure 

8). The rationale behind initially using four separate models, instead of a single all-embracing model, 

is related to the modelling of interaction effects. By separating the models by stage in the life-course 

we can more easily and efficiently model interactions that may be specific to a single stage in the 

life-course, while avoiding the need to model others that do not help in explaining variations in 

mobility behaviour for that stage. The use of an all-embracing model removes this ability and would 

therefore require a greater number of model interaction terms, further increasing the risk of 

sparsity. That said, any significant interactions found in the models presented here can be used to 

inform the parsimonious specification of, potentially all-embracing, complex multilevel models.  

As with the models presented above, only those predictors that have a bivariate association with the 

dependent variable at the p <0.25 significance level are selected for inclusion in the multivariate 

analysis. Moreover, grouped parameter Wald tests are employed in order to test the contribution of 

sets of parameters, while holding others fixed, in the fitted multivariate model (e.g. testing the 

contribution of all of the dummy terms associated with a categorical predictor variable together) 

(Heeringa et al., 2010). Broadly speaking, non-significance in the Wald test suggests that the 

parameters associated with the variable, or the interaction between variables, are not significantly 

different form zero. In the context of this analysis, this can suggest that the variable, or interaction, 

may not be an important predictor of migrant status, given the other variables included in the 

model. 
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Table 11. Pooled (January 2005-07) ROP: Binomial logistic regression of mobility across the broad stages of life-course 

Predictor Model 1: Ages 18-29 Model 2: Ages 30-44 Model 3: Ages 45-64 Model 4: Ages 65+ 

 
B SE Odds B SE Odds B SE Odds B SE Odds 

Constant -2.806 0.185 
 

-4.161 0.151 
 

-5.081 0.179 0.006 -5.763 0.349 
 

Age             

Model 1 (ref: 18-19)            

20-24 -0.087 0.203 0.917 
         

25-29 -0.262 0.126 0.770 
         

Model 2 (ref: 30-34)            

35-39    -0.725 0.040 0.484 
      

40-44    0.001 0.037 1.001 
      

Model 3 (ref: 45-49)   
         

50-54    
   -0.198 0.046 0.820    

55-59    
   0.029 0.042 1.029    

60-64    
   -0.031 0.042 0.970    

Model 4 (ref: 65-69)   
         

70-74    
      -0.461 0.086 0.631 

75-79    
      -0.089 0.079 0.915 

80+    
      0.086 0.076 1.090 

Gender (ref: Female)   
         

Male -0.258 0.082 0.772 -0.001 0.038 0.999 -0.185 0.044 0.831 -0.189 0.073 0.827 

Ethnic group (ref: White)            

Asian -0.342 0.135 0.710 0.181 0.108 1.199 0.227 0.187 1.255 0.118 0.419 1.125 

Black -0.298 0.191 0.743 0.123 0.139 1.131 0.390 0.200 1.477 0.290 0.596 1.337 

Other -0.246 0.142 0.782 0.123 0.121 1.130 0.008 0.176 1.008 -1.993 1.001 0.136 

Marital status (ref: Single)            

Married 0.141 0.072 1.151 -0.139 0.054 0.870 -0.063 0.077 0.939 0.255 0.160 1.291 

Living with partner 0.493 0.057 1.637 0.326 0.059 1.385 0.399 0.097 1.490 0.933 0.238 2.542 

Divorced/separated -0.046 0.165 0.955 0.405 0.062 1.500 0.395 0.077 1.484 0.301 0.178 1.351 
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Widowed -0.351 0.432 0.704 -0.918 0.359 0.399 0.249 0.114 1.282 0.496 0.165 1.643 

Occupation (ref: Higher managerial administrative and professional occupations)        

Not economically active 0.013 0.056 1.013 0.041 0.049 1.042 0.023 0.058 1.023 -0.268 0.191 0.765 

Routine and manual occupations 0.078 0.074 1.081 -0.005 0.058 0.995 0.132 0.064 1.141 -0.141 0.217 0.868 

Intermediate occupations 0.141 0.056 1.152 0.110 0.045 1.117 0.095 0.060 1.100 -0.164 0.262 0.849 

Annual gross household income (ref: £20,000-£29,999)         

Up to £9,999 -0.042 0.069 0.959 0.227 0.057 1.255 0.049 0.069 1.050 0.164 0.179 1.179 

£10,000-£19,999 -0.020 0.059 0.980 0.141 0.044 1.151 0.001 0.057 1.001 0.169 0.154 1.184 

£30,000-£39,999 0.098 0.067 1.103 -0.129 0.054 0.879 -0.018 0.063 0.982 -0.320 0.162 0.726 

£40,000-£49,999 0.046 0.059 1.047 0.088 0.049 1.092 -0.023 0.058 0.977 0.227 0.148 1.254 

£50,000 plus 0.154 0.049 1.166 0.043 0.042 1.044 -0.038 0.051 0.963 0.004 0.117 1.004 

Highest qualification (ref: 5 or more GCSEs)          

No formal qualifications 0.288 0.044 1.334 0.165 0.035 1.179 0.119 0.043 1.126 0.072 0.081 1.074 

2+ 'A' levels 0.163 0.050 1.177 0.143 0.042 1.154 0.149 0.046 1.161 0.060 0.085 1.062 

First degree and higher -0.134 0.058 0.874 -0.149 0.048 0.862 -0.093 0.050 0.911 -0.203 0.088 0.816 

Tenure (ref: Own home)            

Council rent 0.518 0.210 1.678 0.425 0.197 1.530 -0.161 0.282 0.852 0.298 0.132 1.347 

Housing association rent 0.464 0.259 1.590 0.479 0.230 1.614 0.553 0.282 1.738 0.617 0.141 1.853 

Private rent 0.669 0.198 1.952 1.266 0.188 3.545 1.362 0.223 3.902 0.900 0.115 2.460 

Type of home (ref: Semi-detached)           

Detached -0.182 0.090 0.833 0.437 0.053 1.549 0.278 0.068 1.320 0.772 0.141 2.164 

Terraced 0.213 0.054 1.238 -0.033 0.048 0.967 0.163 0.064 1.177 0.198 0.159 1.219 

Bungalow 0.038 0.142 1.039 0.434 0.090 1.544 0.995 0.069 2.705 1.484 0.122 4.409 

Maisonette 0.318 0.124 1.374 -0.010 0.136 0.990 0.324 0.162 1.382 0.755 0.327 2.127 

Flat 0.642 0.063 1.900 0.301 0.067 1.351 0.708 0.077 2.030 1.595 0.143 4.927 

OAC Super-group level (ref: Typical traits)          

Blue collar communities -0.098 0.065 0.907 -0.159 0.057 0.853 -0.276 0.075 0.759 -0.308 0.142 0.735 

City living -0.172 0.096 0.842 -0.346 0.103 0.707 -0.135 0.110 0.874 -0.121 0.158 0.886 

Countryside 0.197 0.087 1.218 0.055 0.066 1.056 0.103 0.073 1.108 0.064 0.119 1.066 

Prospering suburbs 0.191 0.072 1.210 0.016 0.056 1.016 -0.046 0.069 0.955 -0.268 0.118 0.765 
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Constrained by circumstances -0.163 0.072 0.849 -0.043 0.065 0.958 -0.066 0.077 0.936 -0.330 0.133 0.719 

Multicultural -0.306 0.088 0.737 -0.315 0.082 0.730 -0.483 0.109 0.617 -0.737 0.220 0.478 

Plan to move in next 12 months (ref: No)           

Yes -0.211 0.052 0.810 -0.109 0.055 0.896 0.043 0.081 1.044 -0.130 0.207 0.878 

Like your neighbourhood (ref: No)           

Yes 0.745 0.144 2.107 1.019 0.136 2.769 0.792 0.152 2.208 0.745 0.220 2.106 

Data set (ref: January 2005)           

January 2006 -0.727 0.078 0.483 -0.516 0.057 0.597 -0.451 0.071 0.637 0.580 0.117 0.560 

January 2007 -1.124 0.045 0.325 -0.708 0.038 0.493 -0.228 0.045 0.796 -0.139 0.163 0.871 

Tenure x Like your neighbourhood           

Council rent, likes neighbourhood -0.417 0.193 0.659 -0.502 0.205 0.605 0.265 0.288 1.303 
 

  

Rent housing association, likes 
neighbourhood 

-0.458 0.233 0.633 -0.427 0.241 0.652 -0.304 0.294 0.738 
 

  

Rent private, likes neighbourhood -0.554 0.176 0.574 -0.656 0.192 0.519 -0.598 0.229 0.550 
 

  

Gender x Marital status            

Male, married 0.272 0.140 1.313          

Male, living with partner 0.475 0.110 1.609          

Male, divorced/separated 0.504 0.395 1.655          

Male, Widowed -10.699 101.537 0.000          

Age x Tenure            

20−24, council rent -0.919 0.251 0.399          

25−29, council rent 0.315 0.166 1.371          

20−24, rent housing association -0.501 0.334 0.606          

25−29, rent housing association 0.021 0.219 1.021          

20−24, rent private -0.034 0.229 0.966          

25−29, rent private 0.038 0.146 1.039          

35−39, council rent   0.334 0.106 1.396       

40−44, council rent   0.078 0.104 1.082       

35−39, rent housing association  0.117 0.133 1.124       

40−44, rent housing association  -0.011 0.126 0.989       
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35−39, rent private   0.591 0.081 1.806       

40−44, rent private   -0.103 0.078 0.902       

 
Null deviance 18557 on 32367 df 30252 on 103902 df 24187 on 142864 df 9060.6 on 69816 df 

Residual deviance 17233 on 32315 df 28771 on 103854 df 23326 on 142821 df 8458.9 on 69776 df 

Improvement (𝛸2) 61.110, df = 13
a 74.479, df = 9

a 10.673, df = 3
a 601.633, df = 40

b 

AIC 17339 28869 23414 8540.9 
N.B. Model 1 𝑛 = 32,368; Model 2 𝑛 = 103,903; Model 3 𝑛 = 142,865; Model 4 𝑛 = 69,817. 95% confidence intervals can be calculated as: coefficient (B) minus 1.96 * SE (lower boundary) and coefficient (B) plus 1.96 * 

SE (upper boundary) where SE is the standard error. Underlined coefficients are significant at the 95 per cent level. 
a

 Improvement on main effects only model, 
b 

improvement on null model. 
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Figure 5. Pooled (January 2005-07) Model 1, ages 18-29 

 
N.B. The estimated coefficient for the “Male, widowed” interaction term is not shown due to the size of the standard error (Table 11). 

Figure 6. Pooled (January 2005-07) Model 2, ages 30-44 
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Figure 7. Pooled (January 2005-07) Model 3, ages 45-64 

 

Figure 8. Pooled (January 2005-07) Model 4, ages 65+ 
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While the models are themselves broken down according to rather broad life-course stages, each 

stand-alone model was designed to accommodate the potential effects of age at the smaller 

intervals found within the specific life-course groupings. The results are presented in Table 11 and 

Figures 5-8, and provide evidence that marked differences according to age within these broad 

stages of life are apparent and, to a large extent, further highlight some of the demographic themes 

considered above. For instance, the greatest mobility within the early adulthood stage is associated 

with those in the 18-19 age group, that conventionally associated with move away from home to 

university (Champion, 2005b; Duke-Williams, 2009; Smith, 2009). While at the opposite end of the 

life-course there is significantly greater immobility for those in their 70s compared to individuals in 

the immediate years following retirement. Of course, beyond the expected increase in immobility 

for more elderly cohorts, we have come to expect the ages associated with retirement, as with those 

associated with moves to university, to reflect increased mobility behaviour (Evandrou et al., 2010).     

The results strengthen the case that females are more migratory than males, one of Ravenstein’s 

(1885) original laws of migration. Mobility premiums are observed for women of all stages of the 

life-course apart from those in their 30s and early 40s. Indeed, the absence of evidence in support of 

Ravenstein’s theory for the 30-44 age group, is an interesting empirical observation. However, given 

the common theme of family formation and childbearing at this life-stage, it is perhaps not so 

unexpected. After all, the relative plateauing of the female mobility premium can be thought of as 

linked to the ways in which the social and cultural norms associated with such household and family 

based phenomena affect mobility behaviours and propensities differently according to gender (Boyle 

et al., 2001; Magdol, 2002; Boyle et al., 2009).  

The influence of ethnicity on mobility and immobility in Britain has been the focus of increasing 

interest in recent years (Simpson and Finney, 2009; van Ham and Clark, 2009; Stillwell and Hussain, 

2010). According to research by Stillwell and Hussain (2010), almost all ethnic minority groups in 

Britain (bar certain Asian groups) are characterised by higher rates of residential mobility than the 

White-British majority. However, this is to a large extent tied to the fact that the White-British 

majority is, on average, an older population and therefore a seemingly less mobile one (Stillwell and 

Hussain, 2010). With this in mind, the analysis presented in Table 11 and Figures 5-8 is useful in 

showing the remaining effect of the individual’s ethnic background once it is sufficiently 

disentangled from their age/stage in life-course. The findings suggest that there are clear patterns in 

mobility and immobility according to ethnicity which vary through the life-course, with particularly 

interesting results associated with those in early adulthood. Indeed, Table 11 and Figure 5 actually 

reveal a greater likelihood of mobility for individuals from the White majority background than those 
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in the non-White groups, with a particularly strong, and statistically significant, reduction in mobility 

found for individuals from Asian ethnic backgrounds. However, this relationship reverses as we 

move through the stages of the life-course with those from White ethnic backgrounds in the 30-44, 

45-64, and 60+ age groups seen to be less mobile than those in the other ethnic groups. The 

exception to this rule is for those who are classified as ‘Other’ in the post-retirement/elderly (aged 

60+) stages, where a substantial level of immobility is evident when compared to the White 

reference group. That said, the size of the standard error, perhaps best observed in Figure 8, would 

suggest that this estimate is open to a particularly wide degree of variability and so should be 

treated with a good deal of caution.     

Moving beyond the typical demographic characteristics uncovers further patterns. For instance, 

while a change in marital status cannot be inferred, given the cross-sectional nature of the ROP data, 

a focus on the current marital status of movers and non-movers does reveal some patterns that 

appear to vary across the life-course. When focussing on those in early adulthood, the sole 

substantive and statistically significant difference is found between individuals who live with a 

partner and individuals who class themselves as single, with the former suggesting greater mobility 

than the latter. Given that by its very nature, living with partner suggests cohabitation, we can 

expect a change of residence to be necessary for at least one, and possibly both, of the partners, 

with an increased likelihood of the moves being relatively recent given the age group we are 

studying. Applying Wald tests to the model parameters suggests that the interaction of gender and 

marital status, at least at this stage in the life-course, significantly contributes to the multivariate 

model (Wald 𝛸2 = 19.0;  𝑑𝑓 = 4;𝑝 < 0.01) and, as a result, should be included. With the added 

gender-marital status interaction term, we can observe that this relationship is further amplified for 

men; in other words, there is a positive and additional effect for men who live with their partners 

when compared to women who live with theirs7. Therefore, men living with their partners are 2.03 

(exp0.71) times more likely to have undertaken a residential move within the last 12 months than the 

reference group, women who are single8. This compares to women living with their partners who 

are 1.64 times more likely to have moved than single women. Given that cohabitation would 

necessitate at least one individual changing residence, these findings perhaps suggest a slightly 

greater propensity for men to do the moving in. Interestingly, this interaction is not found to be 

significant for any of the later stages in the life-course.  

                                                           
7 The main effect for marital status is interpreted to be the effect for women (the reference category in the 
gender variable) while the interaction terms reflect the additional effect of being male. 
8 The total effect for men living with a partner in this model is: −0.258 ∗ 1 +  0.493 ∗ 1 +  0.475 ∗ (1 ∗ 1)  =
 0.71. 
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The significance of marital status increases somewhat in the more stable family forming/childrearing 

stages of life. Married people, perhaps reflecting this apparent stability, are found to be 0.71 times 

as likely to move as those who are single. However, those living with their partner experience higher 

rates of mobility than singles (odds ratio, 1.36). Divorced/separated people also have greater 

mobility than single people. Indeed, as with family/household formation, the breakdown of 

relationships will in most cases also necessitate the move of one, and possibly both, of the 

individuals (Geist and McManus, 2008; Mulder and Wagner, 2010). Being widowed in this group is 

also found to have a substantial effect with widowers having far greater levels of immobility when 

compared to singles; however, again the magnitude of the standard error calls into question the 

reliability of this estimate (Figure 6). The relationship roughly follows the same pattern in the later 

stages of the life-course, with the exception being the rather unsurprising increase in mobility 

associated with widowhood, something known to influence greater rates of residential mobility 

(Chevan, 2005; Evandrou et al., 2010). 

The literature suggests that both occupational class and gross annual household income play 

important selective roles in residential mobility (Borjas et al., 1992; Fielding, 1992; 1998; 2007; 

Poston and Bouvier, 2010). However, once we control for the additional demographic, socio-

economic and lifestyle/behavioural characteristics of the individual, a substantively important 

relationship between the various occupational or income groups and residential mobility/immobility 

is lacking. For instance, while the appearance of greater mobility for the intermediate occupational 

groups in the 18-29 and 30-44 age groups, when compared to the higher level occupations, is 

statistically significant, the magnitude of the effect is comparatively small, with odds ratios of 1.15 

and 1.12 respectively. Likewise, those with routine and manual occupations between the ages of 45 

and 64 also experience a statistically significant, yet seemingly small increase in mobility when 

compared to the highest occupational groups (odds ratio, 1.14). While it remains relatively trivial 

compared to the other characteristics included in the life-course models, the income dimension is 

perhaps a little more interesting. For instance, for those in early adulthood, there is some evidence 

of a relatively linear relationship, with greater household income associated greater mobility. This is 

a commonly theorised relationship with greater financial resources, indicated by a higher income, 

leading to improved choice within the housing market as well as an increased ability to cover the 

financial costs associated with changing residence. Yet for those in the 30-44 and 65+ age groups, we 

see this admittedly slight association shift into more of a U-shaped relationship with small increases 

in mobility for those in the lower and upper income groups, when compared to the middling income 

levels (Figures 6 and 8). It should be said that other studies focussed on specific stages in the life-

course have also suggested the relative irrelevance of household income on residential 
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mobility/immobility patterns; for instance, the study of the mid-life stage by Wulff et al. (2010) and 

the analysis of migration in later life by Evandrou et al. (2010). While this may be so, it is important 

to keep this study in context. Indeed, the analysis concentrates on variations in the associational 

patterns of demographic, socio-economic and lifestyle/behavioural characteristics for all movers, as 

opposed to non-movers, with no differentiation for the distance moved; for which the average 

across all residential movers modelled here, is assumed to be relatively short given the well-known 

frictional effect of distance on mobility (Stillwell, 1991). If residential movers were to be modelled 

separately as short-distance movers, which are typically thought to be more strongly associated with 

the economics of housing markets and longer-distance migrants, which are again theorised to be 

more closely tied to the economics of the labour market, the expectation might be to find the latter 

group to vary considerably, in terms of income and occupation, from those in the former short-

distance group (Gordon, 1982). While distance moved is not modelled here, future research will 

address this. 

This argument also holds weight when applied to what is observed with the highest qualification 

characteristic. Educational attainment, as with the occupational and income characteristics of 

individuals, is found again to be of quite marginal importance when exploring the variations in 

movers and non-movers. For the small effects we do see, relative stability is observed across the life-

course with small mobility premiums seen for individuals with no formal qualifications or 

qualifications equivalent to two or more ‘A’ levels and small increases in immobility associated with 

individuals educated to the level of first degree or higher. Generally speaking, these findings 

contradict the conventional theories which suggest, in a similar way to the interrelated income and 

occupational factors, that we should expect residential mobility to increase with educational 

attainment. However, as has been alluded to already, it is probable that a separate analysis of 

movers, according to distance travelled, would likely increase the relevance and effect of such a 

variable. Indeed, beyond the labour market dynamics that we would associate with educational 

attainment, highly educated individuals have been suggested to have weaker social ties to their 

locality and therefore less of an instinct to remain within them (van Ham and Feijten, 2008). All 

things considered then, we should perhaps expect those with higher levels of educational 

attainment to move greater distances than those with comparatively lower educational attainment. 

However, as the models presented here suggest, when strictly looking at residential mobility per se, 

our educational attainment appears to be a relatively minor influence.  

Following Gordon’s (1982) suggestions, if the proposed effects of the more labour-market relevant 

variables are suppressed in these models, due to the greater likelihood of movers being short-
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distance movers, it can be forgiven for supposing that the effects of the housing-market orientated 

characteristics will be amplified. The findings from the models presented here do, to a large extent, 

encourage such a supposition. Tenure for example, regardless of one’s age/stage in life-course, is 

found to be a one of the most substantively important and highly significant characteristics. Across 

the board, from those in the stages of early adulthood right through to the post-retirement stages of 

life, there appears to be greater mobility for individuals who rent their accommodation than those 

who own it, an observation that is by no means new (Rossi and Shlay, 1982; Boyle, 1993; Champion 

et al., 1998; Bailey and Livingston, 2005; van Ham and Feijten, 2008).  

The greatest disparity can be seen between private renters and homeowners. Indeed, private 

renters are found to be almost two-times more likely to move than homeowners in the early stages 

of adulthood, with the magnitude of the relationship increasing in the 30s and early 40s (3.5 times 

more likely), and again in the middle-age/pre-retirement stage where the likelihood of moving is 

almost four times greater for private renters. The mobility premium associated with private renters 

depreciates somewhat (odds ratio 2.46) in the final stage of post-retirement and old age, but 

remains strongly predictive of greater mobility. Increased mobility is also observed for those who 

rent from the council, with the non-significant exception of individuals aged 45-64, and those who 

rent from housing associations. Interestingly, Wald tests suggest that the mobility rates associated 

with private renters and council tenants significantly vary according to age within the broad stages 

of the life-course, but only for those associated with early adulthood and, more specifically for this 

stage, only council tenants (Model 1, Table 11; Figure 5) (Wald 𝛸2 = 29.5;  𝑑𝑓 = 6;𝑝 < 0.01) and 

those in the family forming/childrearing stage (Model 2, Table 11; Figure 6) (Wald 𝛸2 = 61.4;  𝑑𝑓 =

6;𝑝 < 0.01).  

Given the inclusion of the interaction terms, the main effects of tenure for those in the 18-29 and 

30-44 groups should be interpreted as the effects for individuals in the reference age brackets, 18-19 

in Model 1 and 30-34 in Model 2 (Table 11; Figures 5 and 6). With this being the case, it should be 

noted that those who record themselves as homeowners at the age of 18-19 are in fact quite 

probably living in their parents (owned) home. Looking at these finer age group variations, council 

tenants aged 18-19 are estimated to be 1.68 times more likely to have moved than the reference 

group, homeowners aged 18-19, whereas council tenants aged 20-24 actually buck the general trend 

with the likelihood of having moved estimated to be 0.61 times that of the reference group. 

Conversely, council tenants in the 30-44 stage are found to have the same directional associations, 

with greater mobility found when compared to homeowners, although the magnitude of the 

relationship is significantly weaker for those aged 35-39 who are in fact only 1.13 times more likely 
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to have moved than those in the reference group, homeowners aged 30-34. This pattern for 

individuals aged 30-34 is also significant for private renters where again, ceteris paribus, we see 

them being slightly less likely to have moved than private renters aged 30-34, when compared to 

homeowners of the same age. In terms of the bigger picture, the greater mobility for council tenants 

is particularly interesting as they have traditionally been associated with lower rates of mobility, 

although more specifically at the inter-regional level, partly linked to the rather rigid allocation 

system employed in the UK (Hughes and McCormick, 2000; Bailey and Livingston, 2005). However, 

such structural restrictions are greatly reduced for localised moves and therefore, given the 

likelihood that most of the recorded moves will be short-distance in nature, the higher mobility 

associated with council tenants, in comparison to homeowners, is not as unexpected as perhaps first 

thought. 

Continuing the housing related trend, house type is also found to be highly influential for patterns of 

mobility/immobility, although the type-specific relationships vary depending on the stage of life-

course. For the youngest stage (early adulthood), mobility is significantly higher for those in flats 

(odds ratio, 1.90), maisonettes (odds ratio, 1.37) and terraced housing (odds ratio, 1.24) and 

significantly lower for those in detached housing (odds ratio, 0.83), when compared to those in semi-

detached housing. Given that we are talking about people at the start of their housing/occupational 

careers, it is perhaps unsurprising that individuals in the housing types we generally associate with 

lower transaction costs reflect a greater likelihood of moving. The picture becomes a little more 

mixed in the middle stages of life (Models 2 and 3, Table 11; Figures 6 and 7) with individuals from 

detached accommodation now reflecting, on average, a greater propensity for residential mobility 

than those in semi-detached housing. This relative increase in mobility associated with detached 

housing, and the relative decrease in the mobility witnessed for those in flats when compared to 

semi-detached accommodation, is likely to reflect the importance of family formation, especially for 

those aged 30-45, and the necessary housing adjustments that changes to family composition are 

known to entail (Rossi and Shlay, 1982; Boyle, 1993; Champion et al., 1998; Bailey and Livingston, 

2005; van Ham and Feijten, 2008; Fielding, 2012). For those in the final stages of the life-course, the 

substantive importance of housing-type increases still further with rather pronounced rates of 

mobility associated with bungalows (odds ratio, 4.41) and flats, the latter suggestive of a mobility 

premium almost five times greater than that of the reference category, semi-detached (Figure 12). 

Indeed, while change to family composition, though family formation, can be thought to influence 

the increased mobility rates observed for the larger accommodation types, the increase in the 

substantive importance of the smaller accommodation types, for this stage in the life-course, can 

also be understood to reflect such factors. For instance, it might be assumed that the housing needs 
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for retired and elderly individuals, in terms of space, are somewhat reduced when compared to 

individuals in earlier stages of life. Moreover, given the onset of old age and the physical problems 

that this can bring, it is of no surprise that a rather substantial shift towards single-level 

accommodation types is apparent.   

While it is measured in a rather simplistic manner here, the effect of the individual’s current 

neighbourhood type can, to a certain extent, be seen to further condition the likelihood of 

undertaking a residential move. All things being equal, and irrespective of stage in the life-course, 

individuals living in multicultural areas are found, on average, to have the lowest levels of mobility.  

Similarly, individuals living in blue collar communities, excluding those in early adulthood, can also 

be seen to have significantly reduced rates of mobility, when compared to individuals living in areas 

classified as typical traits. However, aside from these rather consistent findings, the remaining 

effects associated with neighbourhood type, as observed in previous studies (for example: Kearns 

and Parkes, 2003; van Ham and Feijten, 2008; van Ham and Clark, 2009; Rabe and Taylor, 2010),  are 

fairly trivial when compared to the individual’s demographic, socio-economic and 

behavioural/lifestyle characteristics. Yet it is possible that the technical and analytical limitations 

associated with the inclusion of neighbourhood type in the manner presented here, as a series of 

fixed effects dummy term variables within a single-level modelling framework, are working to 

obscure substantively interesting neighbourhood characteristic/context influences on residential 

mobility/immobility. 

Finally, we are left with the seemingly more nuanced characteristics of movers and non-movers, 

namely those associated with greater conjecture and subjectivity. Individuals’ moving desires, 

expectations and plans are of clear importance to the study of residential mobility and immobility. 

However, from an empirical perspective, the focus on such factors remains surprisingly lacklustre. 

That said, research in this area is increasing, with key contributions focussing on the 

interrelationship between pre-move desires and subsequent moving behaviour (Lu, 1998; Kley and 

Mulder, 2010; Kley, 2011; Coulter et al., 2011; 2012). Unfortunately, the nature of the ROP makes it 

impossible to study the relationship between pre-move desires and subsequent mobility. However, 

in spite of the lack of longitudinal data, we are able to uncover whether, in fact, individuals who 

have moved within the last 12 months are more/less likely to be planning a further move within the 

next 12 months. Looking at the results from the life-course models, the directional relationships, 

aside from those in the 45-64 stage, appear to suggest that individuals are less likely to be planning a 

future move if they have already recently moved.  
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This observation is particularly significant, and statistically more stable, for those in the early 

adulthood phase, where individuals planning to move are on average, 0.81 times as likely to have 

already moved in the 12 months prior to the survey. At first sight, this appears to contradict the 

cumulative inertia hypothesis, wherein individuals with the shortest durations of residence are 

thought to be the most likely to move again, a theory that has been important in explaining the high 

correlation between out-migration and in-migration rates at the aggregate levels (Cordey-Hayes and 

Gleave, 1974). However, micro-level studies, with their notable inclusion of important covariates 

such as age, have shown that the relationship between residence duration and the likelihood of 

considering a future move does not follow a simple monotonic relationship, that is, with 

probabilities of moving decreasing as duration increases. For instance, micro-level analysis by 

Gordon and Molho (1995: 1970) suggests that the likelihood of considering a move peaks at 

approximately seven years, with those in their first 12 months of residence being the least likely to 

consider a further move. Could it be therefore, that the residential moves already performed by 

individuals, particularly in the early adulthood stage, are to a certain extent successful in fulfilling the 

factors that motivated their move in the first place? Indeed, at this stage in the life-course for 

instance, interrelated events such as leaving the parental home, going to university, starting a career 

and forming relationships resulting in cohabitation, are all factors that stimulate residential mobility. 

And it follows therefore, that they are all factors that can be satisfied, to varying degrees, by 

residential mobility. Additionally, given that a mover would, by definition, have lived at their address 

for fewer than 12 months, the financial requirements of a further move, within such a short 

timeframe, would undeniably weigh heavy on their plans for a future move. Of course, planning to 

move is a more definitive statement than simply desiring a move and would suggest that more 

serious practical considerations of the residential move, such as the financial implications, had been 

made (Lu, 1998; Coulter et al., 2011). 

The importance of the neighbourhood, in terms of subjective measures of satisfaction, has become 

an increasingly interesting area within the residential mobility literature (see for instance, Clark and 

Ledwith, 2006; Feijten and van Ham, 2009; Permentier et al., 2009; Hedman, 2011). The analyses 

presented in this literature suggest that, aside from household needs and preferences, 

(dis)satisfaction with the wider neighbourhood is fundamental in motivating a decision to 

move/stay, with greater neighbourhood satisfaction tied closely to a greater likelihood to remain in 

place. However, the processes behind neighbourhood satisfaction are clearly complex and dynamic 

in nature; with variations likely to be driven by differences operating at the level of the individual as 

well as the household (Parks et al., 2001). Therefore, it is perhaps not surprising that the relationship 

between neighbourhood satisfaction and residential mobility is found to vary significantly according 
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to tenure type, although only for those aged 18-29 (Wald 𝛸2 = 10.2;  𝑑𝑓 = 3;𝑝 < 0.05), 30-44 

(Wald 𝛸2 = 12.6;  𝑑𝑓 = 3;𝑝 < 0.01) and 45-64 (Wald 𝛸2 = 10.8;  𝑑𝑓 = 3;𝑝 < 0.05). Overall, 

greater neighbourhood satisfaction is found to be consistently and rather strongly associated with 

residential mobility. Across the various stages of the life-course, people who are satisfied with their 

neighbourhood are more likely to have recently moved than not. However, allowing for this 

relationship to vary according to tenure uncovers further and perhaps more interesting findings. In 

fact, all things being equal, for the relationship between neighbourhood satisfaction and residential 

mobility, there is a positive additional effect associated with homeowners and conversely a negative 

additional effect for renters (be they council, housing association or private). In other words, the 

higher level of neighbourhood satisfaction associated with residential movers is lessened somewhat 

if their tenure type is renter, be it council, housing association, or private, as opposed to 

homeowner. Such findings are perhaps to be expected given that movers who own their home are 

more likely to have invested for the long-term, and subsequently, one would imagine, are more 

likely to have chosen an area/neighbourhood that fits their housing, lifestyle and consumption 

desires more comfortably. After all, the difference is particularly pronounced when comparing 

homeowners to private renters, the latter being the tenure group most closely associated with 

short-term residential durations (Bailey and Livingston, 2005).   

6 Conclusion and next steps 

This paper aimed to address two issues, one of technical and methodological relevance and the 

other of more substantive analytical importance. From a methodological perspective, the paper has 

set out a way in which survey raking (or IPF) can be used as a means for providing some degree of 

protection against potential distortions in model-based estimates; that is, by accounting for the 

unequal probabilities of selection in a sample for which the user has no prior information on the 

sampling design/strategy employed. Through the use of like-for-like weighted and unweighted 

binary logistic regression models, it has been possible to compare the relative difference of the 

estimated odds ratios (in percentage terms) for each model pairing (weighted and unweighted), as 

well as the differences/similarities in the effect sizes and the direction of associations both between 

and across all pairs of models for individual ROP surveys (2005, 2006, 2007) and the pooled data. 

The findings of this comparison suggest a good deal of stability and reliability across all of the eight 

models involved, but particularly for the model estimates derived from the pooled ROP data. Given 

such findings, it is suggested that further analytical research on the pooled data can be performed 

with greater confidence; however, care must be taken not to discount the influence of nonresponse 

bias altogether.  
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The substantive analytical focus in the second part of the paper capitalised on the confidence 

demonstrated in utilising pooled data, and the associated practical advantages gained with 

increased sample size and an inherently flexible data source, to explore how the complex and 

interlinked micro-level characteristics of movers and non-movers vary according to an individual’s 

life-course stage. Separating the life-course into four major stages – 18-29, 30-44, 45-64, and 65+ –  

did uncover some interesting patterns, some of which varied across the life-course (for instance, the 

effects of ethnic background) and others of which remained constant throughout (for instance, the 

effects of neighbourhood type).  

One important conclusion to be drawn from the life-course models is the relative unimportance of 

what can be thought of as the labour market characteristics of individuals. Indeed, occupational 

class, gross annual household income and education levels are all found to play marginal roles in 

influencing an individual’s likelihood to have moved. In contrast, however, the characteristics that 

can be thought of as tied more closely to the housing market, i.e. tenure, house type, 

neighbourhood satisfaction, are found to be of great substantive relevance. Interestingly, such 

findings do appear to contradict much of the literature, at least that which highlights the supposed 

influence of occupational class, income and educational attainment on an individual’s propensity to 

move. However, as mentioned above, it is important to think carefully about what we are measuring 

here. The primary focus is to explore variations in movers and non-movers; however, as with all 

categorisations at such broad levels, it would be foolish to assume that all moves are driven by the 

same processes, influences and dynamics. In fact we know that the motivations behind moves tend 

to vary substantially depending on the spatial distance involved, with short-distance moves 

theorised to be more strongly associated with the economics of housing markets and long-distance 

moves thought to be more closely tied to the economics of the labour market (Gordon, 1982). Given 

that we know the vast majority of moves in the population are short-distance in nature (Stillwell, 

1991; Bailey and Livingston, 2007), when analysing movers and non-movers as two dichotomous 

groups, we are in fact more accurately describing the differences between short-distance movers 

and non-movers. This could well explain, if Gordon (1982) is indeed correct in his theory, the 

apparent marginality found for occupational class, household income and educational attainment, 

and the apparent substantive importance of household tenure, house type and neighbourhood 

satisfaction,  in our models. A theme for future research is to explore this in a multilevel context by 

modelling distance moved as a response while allowing for differential heterogeneity for different 

individual characteristics. 
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While accepting that our findings could be influenced by aforementioned issues, a focus on the more 

subjective behaviours/characteristics of movers and non-movers did uncover results worthy of 

further discussion. Future plans to move are found to be negatively associated with mobility, 

especially for those in their early adulthood. It is suggested therefore that individuals, particularly in 

the young adulthood stage, who undertook a residential move within the 12 months prior to the 

survey were largely successful in fulfilling the factors that motivated their move in the first place, be 

it university, cohabitation or career driven. However, beyond this, it is also highly likely that recent 

movers are comparatively less likely to plan a further move given the various forms of additional 

investment (in terms of time, emotion, and finance) that would be required, a feeling that would 

likely increase if we were to shrink the timeframe between the last move and the proposed future 

move still further.  It was also suggested that the definition of planning a move was more definitive 

as a statement than, for instance, desiring a move would be. As a result it is thought highly likely that 

individuals who are planning to move within the next 12 months have taken these more practical, 

investment related considerations into account. Shifting to the dynamic role of neighbourhood 

satisfaction for mobility and immobility, we observed some rather interesting (and to the knowledge 

of the authors) previously unobserved findings. Indeed, the role of neighbourhood satisfaction is 

found to be a complex one, wherein it would appear to be linked rather strongly to the individual’s 

housing tenure. Primarily, across the various stages of the life-course, people who are satisfied with 

their neighbourhood are more likely to have recently moved than remained in situ. Yet, all things 

being equal, a positive additional effect is associated with homeowners and a negative additional 

effect for renters regardless of type. In other words, the higher level of neighbourhood satisfaction 

associated with residential movers is lessened somewhat if their tenure type is renter, be it council, 

housing association, or private, as opposed to homeowner. It is thus suggested that movers who 

own their home are, for varying reasons, more likely to have chosen a neighbourhood that more 

closely fits their housing, lifestyle and consumption desires.  

While the findings here do help in highlighting how the complex and interlinked micro-level 

behaviours and characteristics of movers and non-movers vary or not, as may be the case according 

to the stage in the life-course. The single-level framework employed does restrict what analysis can 

be undertaken with these data. As was mentioned in the background section, our own personal 

experiences of residential mobility, coupled with a substantial volume of theoretical and empirical 

research, would suggest that residential mobility and immobility are inextricably linked to complex 

structural processes that interact across various scales. As such our analysis of residential mobility 

should be able to recognise that “people make a difference and places make a difference” (Gregory, 

1995, cited in Jones and Duncan, 1996: 81). The findings that have been presented in this paper have 
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shown some effect related to an individual’s neighbourhood type (as measured by the OAC), 

however, while such indicators of aggregate phenomena can be incorporated into a single-level 

model as fixed effects, as they are here, they cannot account for the possibility of residual 

correlation between individuals within shared spatial contexts, for instance their neighbourhood. At 

the same time they are further limited by not being able to properly account for inter-contextual 

variability or the underlying factors behind it (Diez-Roux, 2002). Such technical and analytical 

restrictions can be addressed, however, through the use of a multilevel statistical framework 

(Paterson and Goldstein, 1991; Gould et al., 1997; Snijders and Bosker, 2012). Fundamentally, 

multilevel modelling would allow for the exploration of both individual and area level effects (and 

their interactions) simultaneously and in a statistically reliable manner thanks to its technical 

advantages (the use of ‘shrunken estimation’, using Empirical Bayes and/or Markov Chain Monte 

Carlo estimation) which control for concerns surrounding heterogeneity and (spatial) 

autocorrelation (Jones, 1991; Goldstein, 2003). However, beyond the advantages associated with 

the traditional hierarchical structure, cross-classified designs also pose a great deal of potential. For 

instance, as Bailey et al. (2013: 33) argue “[if] we wish to study mobility outcomes, we need data that 

links people to places they lived some time earlier”. As such with the flexibility allowed for by the 

ROP, it is a possibility to nest individuals within, for instance, their neighbourhood of origin and their 

neighbourhood of destination simultaneously in order to tease out any compositional, contextual or 

compositional/contextual interactions associated with the origin and/or destination. For instance, 

when exploring the distance of a residential move, are certain neighbourhood characteristics more 

influential at the origin than they are at the destination? Do some origin/destination types 

lose/attract (‘send’/‘receive’) longer/shorter distance movers than others? Do subjective evaluations 

of (destination) neighbourhood satisfaction vary according to individual (level-1) and origin and/or 

destination neighbourhood-level (level-2) characteristics? Are there cross-level interactions between 

individual-level and area-level characteristics? This flexibility, once combined with the unique 

characteristics of the ROP data, including the allowance for postcode-to-postcode distance travelled, 

points the way to some potentially quite interesting analyses in the future.  
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Appendix A: Marginal population totals 

N.B. All subtotals are later adjusted to meet the 18+ Mid-2005 Population Estimates for Great Britain 

(𝑁 = 45,775,200) which themselves reflect ONS revisions due to improved migration measures.  

Totals used for the model estimates: 

Government Office Region (GOR) totals: 

GOR Population 

North East A 2,074,000 

North West B 5,503,900 

Yorkshire D 4,124,800 

East Midlands E 3,503,600 

West Midlands F 4,282,800 

East of England G 4,472,800 

London H 6,046,000 

South East J 6,591,200 

South West K 4,158,400 

Wales W 2,384,500 

Scotland X 4,165,800 

GB total (16+) 47,307,800 

Source: Table 8 Mid-2005 Population Estimates: Selected age groups for local authorities in the United 
Kingdom; estimated resident population. 

Age group totals: 

Age Population  

18-24 5,345,300 

25-29 3,651,700 

30-34 4,051,100 

35-39 4,511,800 

40-44 4,475,300 

45-49 3,926,300 

50-54 3,566,800 

55-59 3,812,400 

60-64 3,030,100 

65-69 2,641,800 

70+ 6,762,600 

GB total (18+) 45,775,200 

Source:  Table 2 Mid-2005 Population Estimates: Great Britain; estimated resident population by single year of 
age and sex; reflecting revisions due to improved migration. Office for National Statistics, General Register 
Office for Scotland. 
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Sex group totals: 

Sex Population 

Male 22,118,300 

Female 23,656,600 

GB total (18+) 45,774,900 

Source: Table 2 Mid-2005 Population Estimates: Great Britain; estimated resident population by single year of 
age and sex; reflecting revisions due to improved migration. Office for National Statistics, General Register 
Office for Scotland. 

Mover/non-mover group totals: 

Length of residence Population 

Less than 12 months 4,032,346 

More than 12 months 39,344,060 

GB total (18+) 43,376,406 

Source: Quarterly Labour Force Survey Household Dataset, April - June, 2005. Weight: Person household 
weight. Crown copyright material is reproduced with the permission of the Controller of HMSO and the Queen's 
Printer for Scotland. 

Totals used in the worked example of the raking procedure: 

Income group totals: 

Approx. Gross Annual 
Household Income % of valid responses 

Less than £5,200 1.4 

£5,200 less than £10,400 6.1 

£10,400 less than £15,600 10.5 

£15,600 less than £20,800 9.4 

£20,800 less than £26,000 8.8 

£26,000 less than £31,000 9.6 

£31,000 less than £36,000 9.2 

£36,000 less than £42,000 10.1 

£42,000 less than £47,000 7.8 

£47,000 less than £52,000 7.3 

£52,000 and above 19.9 

Total 100 

Source: Survey of English Housing, 2006-2007. Weight: Household weight. Crown copyright material is 
reproduced with the permission of the Controller of HMSO and the Queen's Printer for Scotland. 

N.B. Refusal to answer the question in the SEH counts as an invalid and is removed from the weighted estimate 
for the gross annual household income distribution for the English population. It was decided to use the SHE 
income estimates, despite the non-coverage of Scotland and Wales, because the categorisation was the closest 
fit to the ROP. The categories were aggregated so as to fit with the ROP income brackets. 
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  Tenure group totals: 

Home ownership Population 
Own your Own Home/ buying on 
mortgage 41,808,186 

Rent Council 6,123,636 

Rent Housing Association 4,237,787 

Rent Private 5,871,681 

GB total (all) 58,041,290 

Source: General Household Survey, 2006. Weight: Weight. Crown copyright material is reproduced with the 
permission of the Controller of HMSO and the Queen's Printer for Scotland. 
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