

What are graphical models?

Sara Geneletti

Department of Epidemiology and Public Health, Imperial College

02/07/2008

Outline

- 1. Introduction
- 2. What is a DAG?
- 3. What can it do?
- 4. What does it mean?
- 5. Heuristic tool
- 6. Formal tool
- 7. Causality
- 8. Useful info

Introduction

Uses

- Physics
- Genetics
- Psychology Path analysis, Structural equation models
- Statistics
- Causal inference

Types

- Directed
- Directed Acyclic
- Unidirected
- Chain graphs

What is a DAG?

DAGs are directed acyclic graphs

- All arrows have direction
- $\blacktriangleright \text{ No cycles } A \rightarrow B \rightarrow A$
- Arrows are not causal unless extra assumptions made time ordering, intervention

What does it do?

DAGs are used to encode conditional independence statements

- In words if we know about C, knowing about A gives us no extra clues about B (and vice-versa)
- Formally, we write $A \perp C \mid B$ [1]
- which means p(A, C|B) = p(A|B)p(C|B)
- Although DAGs have arrows, they DO NOT automatically mean causal relationships
- rather an arrow means dependence/association and lack of an arrow means independence/no association

Simple example - inheritance

- 1. Two children are siblings
- 2. If you know the DNA of one, you know something about the DNA of the other
- 3. they are associated

Simple example - inheritance

- 1. Two children are siblings
- 2. If you know the DNA of one, you know something about the DNA of the other
- 3. they are associated
- 4. If you know their parents' DNA however
- 5. knowing about one child tells you nothing new about the other
- 6. they are independent GIVEN the parents

Qualitative approach

- DAGs can be constructed to make sense of a particular set of relationships
- Make it easier for qualitative and quantitative researchers to understand one another
- Pictorial representation can highlight uncertainty and bias

Caveats

- a DAG that expresses assumptions about relationships (i.e. pre-data analysis) does not necessarily correspond to reality
- Putative associations/causal relations need to be tested against data where possible and assessed carefully

Constructing a DAG

A teenager whose mother had children as a teenager is more likely to have children herself

- A teenager whose mother had children as a teenager is more likely to have children herself
- BUT there are factors that influence both these events

- A teenager whose mother had children as a teenager is more likely to have children herself
- BUT there are factors that influence both these events
- Education (full-time vs school leaver) is one of these
- But surely that is influenced in its own way by?? Anyone?

- A teenager whose mother had children as a teenager is more likely to have children herself
- BUT there are factors that influence both these events
- Education (full-time vs school leaver) is one of these
- But surely that is influenced in its own way by?? Anyone?SES

- This is a simple example could add
 - Ethnicity
 - Low-self esteem
 - Substance abuse
 - history of violence
- Some of these could be unobserved or reported with bias
- e.g. low-self esteem or substance abuse

Incorporating data

Pr(TP|MTP) =

 $\sum_{SES,EDU} \Pr(TP|MTP,SES,EDU)\Pr(EDU|SES)\Pr(MTP|SES)\Pr(SES)$

can use frequencies from contingency tables to estimate Pr(TP|MTP) and Odds Ratio

- The graph tells us how to factorise the distribution of variables into smaller simple parts
- Helps to estimate using a modular approach see later

Incorporating data

- We can do a path analysis [2] by assuming linear relationships between the variables
- For example, if we think that the influence of SES on TP is mediated only by MTP and EDU
- ▶ i.e. *TP*⊥⊥*SES*|(*MTP*, *EDU*) then

Incorporating data

- We can do a path analysis [2] by assuming linear relationships between the variables
- For example, if we think that the influence of SES on TP is mediated only by MTP and EDU
- ▶ i.e. *TP*⊥⊥*SES*|(*MTP*, *EDU*) then
- $\blacktriangleright TP = \alpha MTP + \beta EDU$
- $MTP = \gamma SES$ and $EDU = \delta SES$

Does the DAG correspond to reality?

True?

- So you have a DAG that represents your belief about the relationships
- Does it fit with observed data?
- 1. What conditional independences does DAG encode?
- 2. Moralisation criteria (see next slide)
- 3. Use e.g. χ^2 or Mantel-Haenszel test (or Bayesian network software) to determine if true in data
- Regressions if adding a variable to reg makes no difference to the outcome - maybe there is no dependence (not 100%).

Say you care about relationship between EDU and MTP

- Say you care about relationship between EDU and MTP
- Exclude all variables that are not ancestors of EDU and MTP -only SES here

- Say you care about relationship between EDU and MTP
- Exclude all variables that are not ancestors of EDU and MTP -only SES here
- Join (marry hence moralise) parents of common children (none here)
- remove direction from arrows

- Say you care about relationship between EDU and MTP
- Exclude all variables that are not ancestors of EDU and MTP -only SES here
- Join (marry hence moralise) parents of common children (none here)
- remove direction from arrows
- all paths from EDU and MTP go through SES -MTP ILEDU SES
- i.e. mother being a teen mum is only associated to daughter's education via SES - makes sense?

Say you care about relationship between TP and SES

- Say you care about relationship between TP and SES
- Exclude all variables that are not ancestors of EDU and MTP - all variables are ancestors of TP

- Say you care about relationship between TP and SES
- Exclude all variables that are not ancestors of EDU and MTP - all variables are ancestors of TP
- Join parents of common children

- Say you care about relationship between TP and SES
- Exclude all variables that are not ancestors of EDU and MTP - all variables are ancestors of TP
- Join parents of common children
- remove direction from arrows

- Say you care about relationship between TP and SES
- Exclude all variables that are not ancestors of EDU and MTP - all variables are ancestors of TP
- Join parents of common children
- remove direction from arrows
- ► all paths from SES and TP go through EDU and MTP -TP⊥⊥SES|(MTP, EDU)
- i.e. being a teen mum is only associated to SES via mother's teen mum status and education - not plausible need more confounders!

Getting DAGs from data

3rd ESRC Research Methods Festival 30 June - 3 July 2008 at St Catherine's College Oxford

Data mining

- There are various methods for extracting DAGs from data
- Most ask what the conditional independences are between variables (using e.g. χ² tests) and construct a series of DAGs
- There are also loads of computer programmes that take data and turn it into DAGs

Simple example

3rd ESRC Research Methods Festival 30 June - 3 July 2008 at St Catherine's College Oxford

Political affiliation (PA), abuse as a child (AC) and abusive parent (AP) [3]

Contingency table

O	os					
AC	AP	Ι	S	r	tot	
1	1	12	27 58			
	0	7	28	30		
0	1	9	5	9		
	0	19	15	18		
	tot					

Simple example

3rd ESRC Research Methods Festival 30 June - 3 July 2008 at St Catherine's College Oxford

Political affiliation (PA), abuse as a child (AC) and abusive parent (AP)

Contingency table

O	os					
AC	AP	I	S	r	tot	
1	1	12	27	58	97	
	0	7	28	30	65	
		19	55	88	162	
0	1	9	5	9	23	
	0	19	15	18	52	
	tot	28	20	27	75	

Simple example

Political affiliation (PA), abuse as a child (AC) and abusive parent (AP)

Contingency table

0	Obs PA			Exp		PA					
AC	AP	I	S	r	tot	AC	AP	I	S	r	tot
1	1	12	27	58	97	1	1	12	33	53	97
	0	7	28	30	65		0	8	22	35	65
		19	55	88	162			19	55	88	162
0	1	9	5	9	23	0	1	9	6	8	23
	0	19	15	18	52		0	19	14	19	52
	tot	28	20	27	75		tot	28	20	27	75

The two tables are very similar and "say" that PALLAP AC

DAGs are modular

Data source 1: SES,EDU, MTP

DAGs are modular

- Data source 1: SES,EDU, MTP
- Data source 2: MTP, EDU and TP

DAGs are modular

- Data source 1: SES,EDU, MTP
- Data source 2: MTP, EDU and TP
- Can join two sources to make inference about SES and TP!

Causal inference

Types

- Potential outcomes/Counterfactuals (Rubin [4], Pearl [5])
- Causal Graphs (Pearl[5], Greenland, Robins [6])
- Decision theory (Dawid [7],Geneletti [8],Didelez [9])

General issues

- no causation w/out manipulation
- Means need to be careful about observational data
- typically there are unobserved confounders, reporting bias etc
- Causality is an external assumption

BIBLIOGRAPY

- A. P. Dawid. Conditional Independence in Statistical Theory. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 41(1):1–31, 1979.
- [2] D. Kaplan. Structural Equation Modeling: Foundations and Extensions. SAGE, 2000.
- [3] S.L. Lauritzen. Graphical Models. Clarendon Press, Oxford, 1996.
- [4] Donald B. Rubin. Bayesian Inference for Causal Inference: The Role of Randomization. Annals of Statistics, 6(1):34–58, 1978.
- [5] Judea Pearl. Causality. Cambridge University Press, 2000.
- [6] J. Robins and S. Greenland. Identifiability and Exchangeability for Direct and Indirect Effects. *Epidemiology*, 3:143–155, 1992.
- [7] A. P. Dawid. Causal Inference without Counterfactuals (with comments and rejoinder). Journal of American Statistical Association, 95(450):407–448, 2000.
- [8] S. Geneletti. Direct and indirect effects in a non-counterfactual framework. Journal of the Royal Statistical Society Series B, 69(2):199–215, 2007.
- N. Sheehan and V. Didelez. Mendelian randomisation as an instrumental variable approach to causal inference. Statistical Methods in Medical Research, 16, 2007.

