PEPA

WHAT IS (PROPENSITY SCORE) MATCHING?

Barbara Sianesi

PEPA node of NCRM, Institute for Fiscal Studies

5th ESRC Research Methods Festival

Oxford, July 2012

(PS)MATCHING IS EXTREMELY POPULAR...

- \rightarrow 270,000 entries by googling: propensity score matching
- \rightarrow 13,000 downloads of –psmatch2– 501st of 1,100,000 items in the RePEc/IDEA database
- \rightarrow >1,500 support emails
 - Europe, US, Canada, Central + South America, former SU, Australia, Asia, Africa and the Middle East
 - epidemiology, sociology, economics, statistics, criminology, agricultural economics, health economics, transport economics, public health, nutrition, paediatrics, biostatistics, finance, urban planning, geography and geosciences

WHAT IS (PS)MATCHING?

(PS)Matching is a method/device to make two groups look the same.

Roadmap

- 1. The counterfactual concept of causality
- 2. What is matching?
- 3. How do we use it?
- 4. Should we use it?

THE COUNTERFACTUAL CONCEPT OF CAUSALITY

The Evaluation Problem

to evaluate average *causal* effects of a 'treatment' on an outcome.

The Potential Outcome model

 Y_1 Outcome under treatment Y_0 Outcome without treatment $Y_1 - Y_0$ Treatment effect $D \in \{0, 1\}$ Treatment indicator $Y = \begin{cases} Y_0 & if D = 0 \\ Y_1 & if D = 1 \end{cases}$ Observed outcomeXSet of observed characteristics

The parameters of interest

- $\Box \text{ ATT} \equiv E(Y_1 Y_0 \mid D=1) = E(Y \mid D=1) E(Y_0 \mid D=1)$
- $\Box \text{ ATNT} \equiv E(Y_1 Y_0 \mid D = 0) = E(Y_1 \mid D = 0) E(Y \mid D = 0)$
- $\Box \text{ ATE } \equiv E(Y_1 Y_0) = \text{ATT} \cdot P(D=1) + \text{ATNT} \cdot P(D=0)$

The Fundamental Problem of Causal Inference

Need to invoke (untestable) assumptions to identify **average <u>unobserved</u>** *counterfactuals*.

MATCHING METHODS – INTUITION (FOR ATT)

Ex post mimic a RCT by constructing a suitable comparison group by carefully matching treated and non-treated

→ selected comparison group is as similar as possible to the treatment group...in terms of their observable characteristics

MATCHING METHODS – ASSUMPTIONS

 Identifying assumption: <u>Selection on Observables</u> (conditional independence CIA, exogeneity, ignorability, unconfoundedness) All the relevant differences between treated and non-treated are captured in X:

> ATT: $E(Y_0 | X, D=1) = E(Y_0 | X, D=0)$ ATNT: $E(Y_1 | X, D=1) = E(Y_1 | X, D=0)$ ATE: both

2. To give it empirical content: <u>Common Support</u> We observe participants and non-participants with the same characteristics:

> ATT: P(D=1 | X) < 1ATNT: 0 < P(D=1 | X)ATE: 0 < P(D=1 | X) < 1

 \Rightarrow can use the (observed) mean outcome of the non-treated to estimate the mean (counterfactual) outcome the treated would have had they not been treated.

OPERATIONALISING MATCHING METHODS

Curse of dimensionality

- impose linearity in the parameters (regression analysis)
- choose a distance metric
 - Mahalanobis metric

 $d(i,j) = (X_i - X_j)' V^{1} (X_i - X_j)$

***** Propensity Score $p(x) \equiv P(D=1 | X=x)$

Conditional treatment probability (given confounders X)

The propensity score is a balancing score, i.e. $X \perp D \mid p(X)$

If CIA holds given $X \rightarrow$ CIA holds given p(X)

Overview of Matching Estimators

- 1. pair to each treated *i* some group of 'comparable' non-treated individuals
- 2. associate to the outcome y_i of treated *i*, a matched outcome \hat{y}_i given by the (weighted) outcomes of his 'neighbours' in the comparison group:

$$\hat{y}_i = \sum_{j \in C^0(p_i)} W_{ij} y_j$$

- $C^{0}(p_{i})$ = set of neighbours of treated *i* in the *D*=0 group
- w_{ij} = weight on non-treated *j* in forming a comparison with treated *i*, where $\sum_{j \in C^0(p_i)} w_{ij} = 1$

General form of the matching estimator for ATT (within S_{10}):

$$\hat{ATT} = \frac{1}{\#(D=1\cap S_{10})} \sum_{i \in \{D_i=1\cap S_{10}\}} \{y_i - \hat{y}_i\}$$

= $E(Y | \text{treated on } S_{10}) - E(Y | \text{matched/reweighted non-treated})$

TRADITIONAL MATCHING ESTIMATORS

One-to-one matching

- with or without replacement
- nearest neighbour or within caliper

SIMPLE SMOOTHED MATCHING ESTIMATORS

- K-nearest neighbours
 - with or without replacement
 - nearest neighbour or within caliper
- Radius matching

WEIGHTED SMOOTHED MATCHING ESTIMATORS

- Kernel-based matching
- Local linear regression-based matching
- bandwidth choice
- kernel choice

Checking matching quality

Check (and possibly improve on) balancing of observables

- for each variable
- overall measures

Inference

- naïve variance
- bootstrapping
- Abadie-Imbens heteroskedasticity-robust standard errors when matching on X
- Abadie-Imbens analytical asy std errors taking into account estimation of e(X) for PS nearest neighbour(s) matching with replacement

 $D \perp X \mid \hat{p}(X)$

MATCHING VS OLS

- *same* identifying assumption

If unobserved confounders, just as biased as OLS - internal validity

- avoids any additional assumption

(1) **COMMON SUPPORT**

Matching performed only over Sup_{10} , hence compares only comparable people Might recover a different causal impact: $ATT(Sup_{10}) \neq ATT(Sup_1) - external validity$

(2) **Non-parametric**

Avoids potential misspecification of $E(Y_0 | X)$

Allows for arbitrary X-heterogeneity in impacts $E(Y_1 - Y_0 \mid X)$

 \Rightarrow Matching focuses on **comparability** in terms of **observables**, i.e. on constructing a suitable comparison group by carefully matching treated and non-treated on X / reweighting the non-treated to realign their X

But: if OLS is correctly specified, OLS is more <u>efficient.</u>

BUT we don't need matching to make OLS less parametric...

FULLY INTERACTED OLS -FILM-

$$\begin{split} Y &= m_0(X_1, X_2) + \delta D + \delta_1(X_1 D) + \delta_2(X_2 D) + \delta_{12}(X_1 X_2 D) + e \\ \beta_{ATT} &= \delta + \delta_1 \overline{X}_{1|D=1} + \delta_2 \overline{X}_{2|D=1} + \delta_{12} (\overline{X_1 X_2})_{|D=1} \\ \beta_{ATNT} &= \delta + \delta_1 \overline{X}_{1|D=0} + \delta_2 \overline{X}_{2|D=0} + \delta_{12} (\overline{X_1 X_2})_{|D=0} \\ \beta_{ATE} &= \delta + \delta_1 \overline{X}_1 + \delta_2 \overline{X}_2 + \delta_{12} (\overline{X_1 X_2}) \end{split}$$

Can F-test for presence of heterogeneous effects.

STILL, matching (≠ OLS) highlights comparability of groups

Check matching quality

- Propensity score
 - more 'structural' model
 - more flexible specification
 - probit/logit
 - probability/index/odds ratio
- Matching
 - metric: X, $\hat{p}(X)$ or $\{X, \hat{p}(X)\}$
 - type of matching
 - smoothing parameters
 - common support
- Assessment of matching quality

CAN we get the two groups balanced (in terms of *X*)? [Think back to RCT...]

STRENGTHS and Weaknesses

Advantages

- controls for selection on observables and on observably heterogeneous impacts
- non-(or semi-) parametric: no specific form for outcome equation, decision process or either unobservable term
- Sup₁₀: compare only comparable people and help determining which results reliable
- flexible and easy

⊗ Disadvantages ⊗

- selection on observables: matching as good as its X's
- restricting to Sup₁₀ may change parameter being estimated \rightarrow unable to identify ATT
- data hungry

EXAMPLE: IMPACT OF NSW

Very famous data in the evaluation literature, combining treatment and controls from a <u>randomised</u> evaluation of the NSW Demonstration with <u>non-experimental</u> individuals drawn from various sources.

NSW male treated (297) with male comparisons drawn from the PSID (2,490)

Y = real earnings in 1978

X = age, ethnicity (black and hisp), education (years and <12 years), real preprogramme earnings in 1975

COMPARABILITY OF GROUPS

NSW trainees vs NSW control group

	Mean			t-t	est
Variable	Treated	Control	%bias	t	p> t
age black bispanic	24.626 .80135	24.447 .8	2.7 0.3	0.36	0.721
educ nodegree married	10.38 .73064 .16835	10.188 .81412 .15765	-0.1 11.2 -20.0 2.9	1.49 -2.67 0.38	0.136 0.008 0.701
re75	3066.1	3026.7	0.8	0.10	0.918
Pseudo R2	LR chi2	F	p>chi2	MeanB	MedB
0.008	7.83		0.348	6.3	2.9

True ATT (experimental estimator) = 886*

NSW trainees vs PSID comparison group

Mean				t-t	est
Variable	Treated	Control	%bias	t	p> t
age black hispanic educ nodegree married re75	24.626 .80135 .09428 10.38 .73064 .16835 3066.1	34.851 .2506 .03253 12.117 .30522 .86627 19063	-116.6 132.1 25.5 -68.6 94.0 -194.9 -156.6	-16.48 20.86 5.21 -9.51 15.10 -33.02 -20.12	0.000 0.000 0.000 0.000 0.000 0.000 0.000
Pseudo R2	LR chi2	р	>chi 2	MeanB	MedB
0.613	1158.40		0.000	112.6	116.6

 \rightarrow expect naïve comparison to be downward biased

Naïve estimator = -15,578***

Distribution of $\hat{p}(X)$

NSW treated

PSID comparisons

	Percentiles	Smallest		Percentiles	Smallest
1%	.0072364	.0013841	1%	1.19e-17	3.36e-68
5%	0615839	0023394	5%	8.52e-11	1.31e-35
10%	.1406408	.0072364	10%	1.29e-08	4.62e-34
25%	.4338393	.0117305	25%	5.14e-06	1.00e-29
50%	.728096		50%	.0005869	
		Largest			Largest
75%	.8627535	.9305425	75%	.0184245	.8831188
90%	.912396	.9305425	90%	.1239506	.8924563
95%	.9244412	.9305425	95%	2752407	.9135577
99%	.9305425	.9402942	99%	.733402	.9172212

NSW trainees vs matched PSID comparison group – nearest neighbour (w/ replac)

Variable	Me Treated	an Control	%bias	t-t t	est p> t
age black hispanic educ nodegree married re75	24.626 .80135 .09428 10.38 .73064 .16835 3066.1	24.939 .79798 .09091 10.189 .69697 .12795 3147.8	-3.6 0.8 1.4 7.6 7.4 11.3 -0.8	-0.52 0.10 0.14 1.05 0.91 1.39 -0.22	0.606 0.919 0.888 0.294 0.365 0.166 0.823
Pseudo R2	LR chi2	р	>chi2	MeanB	MedB
0.010	7.88		0.343	4.7	3.6

	Me	an		t-t	t-test	
Variable	Treated	Control	%bias	t	p> t	
age	24.626	24.764	-1.6	-0.26	0.792	
black	.80135	.80135	0.0	-0.00	1.000	
hi spani c	.09428	.09428	0.0	0.00	1.000	
educ	10.38	10.481	-4.0	-0.69	0.490	
nodearee	.73064	.73064	0.0	-0.00	1.000	
married	.16835	.17172	-0.9	-0.11	0.913	
re75	3066.1	3210.9	-1.4	-0.38	0.705	
Pseudo R2	LR chi2	p>	chi 2	MeanB	MedB	
0.001	1.16	C	.992	1.1	0.9	

<u>NSW trainees vs matched PSID comparison group – Mahal on X and p(X)</u>

Achieved balancing

Kernel (epan, *h*=0.01)

Radius (*r*=0.01)

Mahalanobis

Augmented Mahalanobis

How many PSID members are we *really* using?

Nearest neighbour (w/ replac)

psmatch2: weight of matched controls	Freq.
1	73
2	20
3	8
4	3
5	4
6	1
7	2
8	1
10	1
11	2
12	2
19	1
25	1
Total	119

Kernel (Epan, h=0.01)

	psmatch2: weight of matched controls					
	Percentiles	Smallest				
1%	.0016077	.0016077				
5%	.0016077	.0016077				
10%	.0016077	.0016077	Obs	2488		
25%	.0016086	.0016077	Sum of Wgt.	2488		
50%	.0017062		Mean	.1089228		
		Largest	Std. Dev.	.6965381		
75%	.0241382	8.997245				
90%	.0779037	10.69014	Variance	.4851654		
95%	.2674301	14.43801	Skewness	13.42271		
99%	2.285146	15.56199	Kurtosis	230.4088		

Impact estimates

True ATT (experimental estimator)	886*
Naïve estimator	-15,578***
OLS	-1,458*
FILM	-1,361*
Nearest neighbour (w/ replacement)	551
Kernel (Epan, h=0.01)	-737
Augmented Mahalanobis	-830

ATNT Average effect of NSW programme had the PSID participated in it

Kernel PS matching (epan, *h*=0.06)

•	psmatch2 treate	d age black	hispanic marı	ried educ nod	egree re75, o	ut(re78) kern	el qui at
	Variable	Sample	Treated	Controls	Difference	S.E.	T-stat
	re78	Unmatched ATT ATU ATE	5976.35202 5976.35202 21553.9209	21553.9209 7253.90399 8973.94382	-15577.5689 -1277.55197 -12579.9771 -11375.5206	913.328457 1878.9332	-17.06 -0.68

Fully interacted regression model

. film re78	treated age	black hispa	unic married	l educ nodegree re75, ate
	est.	s.e.	p-value	[95% Conf. Interval]
OLS FILM	-1457.915	801.6278	0.069	-3029.761 113.9315
o att	-1360.8	811.7263	0.094	-2952.449 230.8498
o atu	-12467.76	2542.776	0.000	-17453.69 -7481.834
o ate	-11284.14	2289.46	0.000	-15773.36 -6794.915
F-test of no	heterogeneo	ous effects:	F = 6.	54 Prob>F = 0.0000

Nearest neighbour

psmatch2: weight of matched controls	Freq.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 19 20 21 25 26 28 31 33 49 53 69 130 159 1444	49 22 8 5 2 3 2 1 1 1 2 1 3 2 1 1 1 1 2 1 8 5 2 3 2 1 1 1 1 2 1 8 5 2 3 2 1 1 1 1 2 1 8 5 2 3 2 1 1 1 1 1 2 1 8 5 2 3 2 1 1 1 1 1 2 1 8 5 2 8 5 2 8 5 2 8 5 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total	119

	Kernel (Epan, <i>h</i> =0.06)						
	psmatch2: weight of matched controls						
	Percentiles	Smallest					
1%	.0587851	.034638					
5%	.0725001	.0587851					
10%	.0992905	.0587851	Obs	297			
25%	.1502837	.0587851	Sum of Wgt.	297			
50%	.3663589		Mean	8.383838			
		Largest	Std. Dev.	32.23784			
75%	.9229564	168.1198					
90%	6.949462	169.0728	Variance	1039.278			
95%	25.99836	169.3782	Skewness	4.426013			
99%	169.0728	169.7076	Kurtosis	21.0784			

ATNT: $-12,580^{***}$ (matching) $\approx -12,468^{***}$ (film)

Good the PSID did not go into the programme!

Or is it...?

And now that we are thinking about it...

Do we really want to know the impact the NSW would have had on the full PSID has they participated?!?

Variable		Unmatched Matched	Mean Treated Control		%bias	%reduct bias	t-t t	t-test t p> t	
age		Unmatched Matched	34.851 34.851	24.626 29.923	116.6 56.2	51.8	16.48 19.00	0.000	
black		Unmatched Matched	. 2506 . 2506	.80135 .55964	-132.1 -74.1	43.9	-20.86 -23.40	0.000	
hispanic		Unmatched Matched	.03253 .03253	.09428 .01161	-25.5 8.6	66.1	-5.21 5.04	0.000	
educ		Unmatched Matched	12.117 12.117	10.38 10.594	68.6 60.2	12.3	9.51 20.51	0.000	
nodegree		Unmatched Matched	.30522 .30522	.73064 .54157	-94.0 -52.2	44.4	-15.10 -17.38	0.000	
married		Unmatched Matched	.86627 .86627	.16835 .70206	194.9 45.9	76.5	33.02 14.37	0.000	
re75		Unmatched Matched	19063 19063	3066.1 13865	156.6 50.9	67.5	20.12 15.20	0.000 0.000	
Sample	ple Pseudo R2 LR		chi2 p>chi2		MeanBias	MedB	MedBias		
Raw Matched		0.613 11 0.228 15	58.40 77.43	0.000 0.000	112.6 49.7	116.0 52.2	5		

WRAPPING UP...

SELECTION ON UNOBSERVABLES

Set of conditioning X matters
 ⇒ better data help a lot!

SELECTION ON OBSERVABLES

- Avoid use of functional forms in constructing counterfactual
 ⇒ (matching ≈ fully interacted OLS) > simple OLS
 no mis-specification bias
- - hence reliability (& relevance) of estimates

SELECTED REFERENCES

A comprehensive review

Imbens, G. (2004), 'Semiparametric estimation of average treatment effects under exogeneity: a review', *Review of Economics and Statistics*, 86, 4-29.

The propensity score

- Rosenbaum, P.R. and Rubin, D.B. (1983), "The Central Role of the Propensity Score in Observational Studies for Causal Effects", *Biometrika*, 70, 41-55.
- Rosenbaum, P.R. and Rubin, D.B. (1984), "Reducing Bias in Observational Studies Using Sub-Classification on the Propensity Score", *Journal of the American Statistical Association*, 79, 516-524.
- Rosenbaum, P.R. and Rubin, D.B. (1985), "Constructing a Control Group Using Multivariate Matched Sampling Methods that Incorporate the Propensity Score", *The American Statistician*, 39, 1, 33-38.
- Dehejia, R.H. and Wahba, S. (1999), "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programmes", *Journal of American Statistical Association*, 94, 1053-1062.
- Heckman, J.J., Ichimura, H. and Todd, P.E. (1997), "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme", *Review of Economic Studies*, 64, 605-654.
- Heckman, J.J., Ichimura, H. and Todd, P.E. (1998), "Matching as an Econometric Evaluation Estimator", *Review of Economic Studies*, 65, 261-294.

Mahalanobis-metric matching

- Rubin, D.B. (1979), "Using Multivariate Matched Sampling and Regression Adjustment to Control Bias in Observational Studies", *Journal of the American Statistical Association*, 74, 318-328.
- Rubin, D.B. (1980), "Bias Reduction Using Mahalanobis-Metric Matching", *Biometrics*, 36, 293-298.

Multiple treatments

- Imbens, G.W. (2000), "The Role of Propensity Score in Estimating Dose-Response Functions", *Biometrika*, 87, 706-710.
- Lechner, M. (2001), Identification and Estimation of Causal Effects of Multiple Treatments under the Conditional Independence Assumption, in: Lechner, M., Pfeiffer, F. (eds), *Econometric Evaluation of Labour Market Policies*, Heidelberg: Physica/Springer, 43-58.

Inference/Efficiency issues

- Abadie, A. and Imbens, G. (2011), "Matching on the Estimated Propensity Score", mimeo.
- Abadie, A. and Imbens, G. (2006), "Large Sample Properties of Matching Estimators for Average Treatment Effects", *Econometrica*, 74, 235-267.
- Hahn, J. (1998), "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," *Econometrica*, 66, 315-331.
- Hirano, K., G. Imbens, and G. Ridder (2003), "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," *Econometrica*, 71, 1161-1189.