Including family effects in multilevel models for pupil progress

Rebecca Pillinger, Jon Rasbash, George Leckie and Jenny Jenkins
1. Partitioning variation in progress
What do we already know?

<table>
<thead>
<tr>
<th>Response Predictors</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prog</td>
<td>Prog</td>
<td>Prog</td>
<td>Att</td>
<td>Att</td>
<td>Prog</td>
<td>Att</td>
<td>Prog</td>
<td>Prog</td>
</tr>
<tr>
<td>LEA</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Neighbhd</td>
<td>0.2</td>
<td>3</td>
<td>2</td>
<td>20</td>
<td>4</td>
<td>14</td>
<td>1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Secondary Primary</td>
<td>Y</td>
<td>5</td>
<td>22</td>
<td>fixed</td>
<td>7</td>
<td>1</td>
<td>20</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>Primary</td>
<td>5—20</td>
<td>5—20</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cohort</td>
<td>80—95</td>
<td>80—95</td>
<td>93</td>
<td>73</td>
<td>80</td>
<td>96</td>
<td>79</td>
<td>98</td>
<td>75</td>
</tr>
<tr>
<td>MZ twins</td>
<td>86</td>
<td>86</td>
<td>0.86</td>
<td>0.60</td>
<td>0.64</td>
<td>0.47</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DZ twins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full sibs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Typical school effectiveness studies, e.g. Goldstein et al. (2007) (primary schools) and Leckie (2008) (secondary schools)
2. Yang & Woodhouse (2001), progress from GCSE to A-level
3. Fielding et al. (2006)
4. Garner & Raudenbush (1991); predictors include family background, neighbourhood social deprivation and school fixed effects
7. Leckie (2008)
8. Bouchard & McGue (1981); metaanalysis of 110 studies
9. Duncan et al. (2001); US data; response is Peabody Picture Vocabulary Test
Previous studies

School effectiveness
- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Developmental Psychology
- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment
- What is the shared environment?
- In other words, How much of the shared environment is family, school and area?
School effectiveness
- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram:
- School
- Pupil
Previous studies

School effectiveness
- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram

LEA

school

pupil
Previous studies

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram

LEA

School

Cohort

Pupil
Previous studies

School effectiveness
- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram:
- School
- Area
- Pupil
Previous studies

School effectiveness
- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram

```
LEA 1  LEA 2
  |     |
school  area
  |     |
pupil
```

\[
\begin{align*}
\text{u}_j & \sim \mathcal{N}(0, \sigma^2_u), i = 1, \ldots, n_j \\
\text{e}_{ij} & \sim \mathcal{N}(0, \sigma^2_e), j = 1, \ldots, J(B)
\end{align*}
\]
Previous studies

School effectiveness
- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram

- pupil
 - secondary
 - primary
School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram:

- Secondary
- Area
- Primary
- Pupil

$u_j \sim N(0, \sigma^2_u)$, $i = 1, \ldots, n$

$e_{ij} \sim N(0, \sigma^2_e)$, $j = 1, \ldots, J$
Previous studies

School effectiveness

- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram

Model

\[y_{ij} = \alpha + \beta x_{ij} + u_j + e_{ij}, \]

\[u_j \sim N(0, \sigma_u^2), \quad i = 1, \ldots, n_j \]

\[e_{ij} \sim N(0, \sigma_e^2), \quad j = 1, \ldots, J \]

(B)
Previous studies

School effectiveness
- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram

Model

\[
\text{GCSE}_{ij} = \alpha + \beta \text{pretest}_{ij} + u_j + e_{ij},
\]

\[
u_j \sim N(0, \sigma_u^2), \quad i = 1, \ldots, n_j
\]

\[
e_{ij} \sim N(0, \sigma_e^2), \quad j = 1, \ldots, J
\]
Previous studies

School effectiveness
- Models usually have pupils within schools (2 levels)
- There have been studies that also included area or primary school
- But no studies have included family
- The largest component of variation in these models is the pupil level
- How much of that is really family level?

Classification diagram
- school
- pupil

Model
\[
\text{GCSE}_{ij} = \alpha + \beta_1 \text{pretest}_{ij} + \beta_2 x_{ij} + u_j + e_{ij},
\]
\[
u_j \sim N(0, \sigma_u^2) , \quad i = 1, \ldots, n_j
\]
\[
e_{ij} \sim N(0, \sigma_e^2) , \quad j = 1, \ldots, J
\]
Models usually have children within families

Researchers recognise that really these models partition into shared environment and non-shared environment

What is the shared environment?

In other words, How much of the shared environment is family, school and area?
Previous studies

Classification diagram

Model

\[y_{ij} = \alpha + u_j + e_{ij} + g_{ij} \]

\[u_j \sim \mathcal{N}(0, \sigma_u^2) \]

\[e_{ij} \sim \mathcal{N}(0, \sigma_e^2) \]

\[g_{ij} \sim \mathcal{N}(0, \sigma_g^2) \]

\[\text{Cov}(g_{i1j}, g_{i2j}) = r_{(i1j, i2j)} \sigma_g^2 \]

Developmental Psychology

- Models usually have children within families.
- Researchers recognise that really these models partition into shared environment and non-shared environment.
- What is the shared environment?
- In other words, how much of the shared environment is family, school and area?
Previous studies

Classification diagram

![Diagram](image)

Model

\[y_{ij} = \alpha + d_j u_{1j} + d_j e_{1ij} + (1 - d_j) e_{2ij} \]

\[u_{1j} \sim N(0, \sigma^2_u), \quad [e_{1ij}] \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma^2_{e1} & 0 \\ 0 & \sigma^2_{e2} \end{bmatrix}\right) \]

Developmental Psychology

- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment
- What is the shared environment?
- In other words, How much of the shared environment is family, school and area?
Previous studies

Classification diagram

Model

\[
\text{GCSE}_{ij} = \alpha + \text{twin}_j u_{1j} + \text{twin}_j e_{1ij} + \text{nontwin}_j e_{2ij}
\]

\[
u_{1j} \sim N \left(0, \sigma_u^2\right),
\]

\[
\begin{bmatrix} e_{1ij} \\ e_{2ij} \end{bmatrix} \sim N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{e1}^2 & \sigma_{e2}^2 \\ \sigma_{e2}^2 & \sigma_{e2}^2 \end{bmatrix}\right)
\]

(A)

Developmental Psychology

- Models usually have children within families
- Researchers recognise that really these models partition into shared environment and non-shared environment
- What is the shared environment?
- In other words, How much of the shared environment is family, school and area?
Our model

Classification diagram

- LEA
- neighbhd
 - secondary
 - family
 - primary
 - pupil

\[y_i = \alpha + \beta x_i + u_i \]
Our model

Classification diagram

LEA \rightarrow \text{secondary} \rightarrow \text{pupil} \sim N(0, \sigma^2_{u(6)})

neighbhd \rightarrow \text{primary} \rightarrow \text{pupil} \sim N(0, \sigma^2_{u(6)})

\text{fam}(i) \sim N(0, \sigma^2_{u(2)})

dfam(i) \sim N(0, \sigma^2_{u(2)})

\left[e_1(i) \quad e_2(i) \right] \sim N(0, \left[\sigma^2_{e1} \quad \sigma^2_{e2} \right])
Our model

\[y_i = \alpha + \beta x_i + u_6(i) \]

\[\text{LEA}(i) \]

\[\text{sec}(i) \]

\[\text{nbhd}(i) \]

\[\text{pri}(i) \]

\[\text{dfam}(i) \]

\[u_2(fam) \]

\[e_1(i) \]

\[e_2(i) \]

\[\sim N(0, \sigma^2_{u6}) \]

\[\sim N(0, \sigma^2_{u3}) \]

\[\sim N(0, \sigma^2_{u2}) \]

\[\sim N(0, \sigma^2_{e1} \sigma^2_{e2}) \]

Classification diagram

- LEA
- Neighbourhood
- Secondary
- Family
- Primary
- Pupil
Our model

Model

\[y_i = \alpha + \beta x_i + u^{(6)}_{\text{LEA}(i)} + u^{(5)}_{\text{sec}(i)} + u^{(4)}_{\text{nbhd}(i)} + u^{(3)}_{\text{pri}(i)} \]
\[+ d_{fam}(i) u^{(2)}_{\text{fam}(i)} + d_{fam}(i) e_1i + (1 - d_{fam}(i)) e_2i \]

Classification diagram

\[
\begin{align*}
 u^{(6)}_{\text{LEA}(i)} &\sim N \left(0, \sigma^2 u^{(6)} \right) \\
 \vdots &\vdots \\
 u^{(3)}_{\text{pri}(i)} &\sim N \left(0, \sigma^2 u^{(3)} \right) \\
 u^{(2)}_{\text{fam}(i)} &\sim N \left(0, \sigma^2 u^{(2)} \right) \\
 \begin{bmatrix} e_1i \\ e_2i \end{bmatrix} &\sim N \left(0, \begin{bmatrix} \sigma^2 e_1 \\ 0 \\ \sigma^2 e_2 \end{bmatrix} \right)
\end{align*}
\]
\((C)\)
Our model

\[\text{Model} \]
\[
\text{GCSE}_i = \alpha + \beta_1 \text{pretest}_i + \beta_2 \text{twin}_i + \beta_3 \text{pretest} \cdot \text{twin}_i \\
+ u_{\text{LEA}(i)}^{(6)} + u_{\text{sec}(i)}^{(5)} + u_{\text{nbhd}(i)}^{(4)} + u_{\text{pri}(i)}^{(3)} \\
+ \text{twin}_{\text{fam}(i)} u_{\text{fam}(i)}^{(2)} + \text{twin}_{\text{fam}(i)} e_{1i} + \text{nontwin}_{\text{fam}(i)} e_{2i}
\]

\[
u^{(6)}_{\text{LEA}(i)} \sim \mathcal{N} \left(0, \sigma^2 u^{(6)}\right) \\
\vdots \quad \vdots \\

\[
u^{(3)}_{\text{pri}(i)} \sim \mathcal{N} \left(0, \sigma^2 u^{(3)}\right) \\
\nu^{(2)}_{\text{fam}(i)} \sim \mathcal{N} \left(0, \sigma^2 u^{(2)}\right) \\
\begin{bmatrix} e_{1i} \\ e_{2i} \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} \sigma^2 e_{1} & 0 \\ 0 & \sigma^2 e_{2} \end{bmatrix}\right) (C)
\]
Our data

Sample

All pupils in

- England
- state schools
- 2007 GCSE cohort
Our data

Sample
All pupils in
- England
- state schools
- 2007 GCSE cohort

Variables
- Test scores from the NPD
 - GCSE (our response) and key stage 2 (KS2)
- Background characteristics from PLASC
 - age
 - gender
 - ethnicity
 - FSM eligibility
 - SEN
 - EAL
- ONS data on LSOAs
 - IDACI

All continuous variables have been standardized
Our data

Sample
All pupils in
- England
- state schools
- 2007 GCSE cohort

Levels
- The data records which
 - LEA
 - secondary school
 - primary school
 - area (LSOA)
 each pupil belongs to
- But not which family

Variables
- Test scores from the NPD
 - GCSE (our response) and
 - key stage 2 (KS2)
- Background characteristics from PLASC
 - age
 - gender
 - ethnicity
 - FSM eligibility
 - SEN
 - EAL
- ONS data on LSOAs
 - IDACI

All continuous variables have been standardized
Identifying twins

- We get the family level by identifying twin pairs
- by matching on time invariant characteristics
 - date of birth
 - ethnicity
 - EAL
- and pattern of time-varying characteristics
 - postcode sector
 - FSM eligibility

How successful is this?

- 11.54 twin births per 1000 maternities in 1990 & 1991
- 9.37 twin pairs per 1000 families in our matching
- We may also have labelled some unrelated pupils as a ‘twin pair’
- Calculation suggests around 10% of ‘twin pairs’ will be coincidental matches

Size of dataset

- 551,220 pupils
- 5116 twin pairs
- 30507 LSOAs
- 3099 secondaries
- 14765 primaries
- 149 LEAs
Results

<table>
<thead>
<tr>
<th></th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons</td>
<td>-0.003 (0.001)</td>
<td>-0.003 (0.001)</td>
<td>0.001 (0.008)</td>
<td>-0.039 (0.007)</td>
</tr>
<tr>
<td>twin</td>
<td>0.177 (0.008)</td>
<td>0.179 (0.007)</td>
<td>0.162 (0.007)</td>
<td>0.154 (0.007)</td>
</tr>
<tr>
<td>pretest</td>
<td>0.730 (0.001)</td>
<td>0.729 (0.001)</td>
<td>0.701 (0.001)</td>
<td>0.641 (0.001)</td>
</tr>
<tr>
<td>pretest.twin</td>
<td>-0.040 (0.007)</td>
<td>0.000 (0.007)</td>
<td>-0.027 (0.006)</td>
<td>-0.020 (0.006)</td>
</tr>
<tr>
<td>female</td>
<td></td>
<td></td>
<td></td>
<td>0.184 (0.002)</td>
</tr>
<tr>
<td>Asian</td>
<td></td>
<td></td>
<td></td>
<td>0.429 (0.005)</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td>0.225 (0.006)</td>
</tr>
<tr>
<td>Chinese</td>
<td></td>
<td></td>
<td></td>
<td>0.556 (0.015)</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td>0.045 (0.005)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td>0.403 (0.010)</td>
</tr>
<tr>
<td>FSM</td>
<td></td>
<td></td>
<td></td>
<td>-0.248 (0.003)</td>
</tr>
<tr>
<td>age</td>
<td></td>
<td></td>
<td></td>
<td>-0.012 (0.000)</td>
</tr>
<tr>
<td>SEN</td>
<td></td>
<td></td>
<td></td>
<td>-0.231 (0.003)</td>
</tr>
<tr>
<td>IDACI</td>
<td></td>
<td></td>
<td></td>
<td>-0.103 (0.001)</td>
</tr>
<tr>
<td>LEA</td>
<td></td>
<td>0.065 (0.002)</td>
<td>0.005 (0.001)</td>
<td>0.005 (0.001)</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td>0.065 (0.002)</td>
<td>0.043 (0.001)</td>
<td>0.035 (0.001)</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td>0.035 (0.001)</td>
<td>0.025 (0.000)</td>
<td></td>
</tr>
<tr>
<td>LSOA</td>
<td></td>
<td>0.008 (0.000)</td>
<td>0.002 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Family (twin)</td>
<td>0.238 (0.007)</td>
<td>0.168 (0.005)</td>
<td>0.157 (0.005)</td>
<td></td>
</tr>
<tr>
<td>Pupil (twin)</td>
<td>0.160 (0.003)</td>
<td>0.157 (0.003)</td>
<td>0.150 (0.003)</td>
<td></td>
</tr>
<tr>
<td>Pupil (non-twin)</td>
<td>0.468 (0.001)</td>
<td>0.402 (0.002)</td>
<td>0.383 (0.001)</td>
<td>0.357 (0.001)</td>
</tr>
</tbody>
</table>

Using MCMC; 450,500 iterations and a burn-in of 50,000
Results

<table>
<thead>
<tr>
<th></th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons</td>
<td>-0.003 (0.001)</td>
<td>-0.003 (0.001)</td>
<td>0.001 (0.008)</td>
<td>-0.039 (0.007)</td>
</tr>
<tr>
<td>twin</td>
<td>0.177 (0.008)</td>
<td>0.179 (0.007)</td>
<td>0.162 (0.007)</td>
<td>0.154 (0.007)</td>
</tr>
<tr>
<td>pretest</td>
<td>0.730 (0.001)</td>
<td>0.729 (0.001)</td>
<td>0.701 (0.001)</td>
<td>0.641 (0.001)</td>
</tr>
<tr>
<td>pretest.twin</td>
<td>-0.040 (0.007)</td>
<td>0.000 (0.007)</td>
<td>-0.027 (0.006)</td>
<td>-0.020 (0.006)</td>
</tr>
<tr>
<td>female</td>
<td></td>
<td></td>
<td></td>
<td>0.184 (0.002)</td>
</tr>
<tr>
<td>Asian</td>
<td></td>
<td></td>
<td></td>
<td>0.429 (0.005)</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td>0.225 (0.006)</td>
</tr>
<tr>
<td>Chinese</td>
<td></td>
<td></td>
<td></td>
<td>0.556 (0.015)</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td>0.045 (0.005)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td>0.403 (0.010)</td>
</tr>
<tr>
<td>FSM</td>
<td></td>
<td></td>
<td>-0.248 (0.003)</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td></td>
<td></td>
<td>-0.012 (0.000)</td>
<td></td>
</tr>
<tr>
<td>SEN</td>
<td></td>
<td></td>
<td>-0.231 (0.003)</td>
<td></td>
</tr>
<tr>
<td>IDACI</td>
<td></td>
<td></td>
<td>-0.103 (0.001)</td>
<td></td>
</tr>
</tbody>
</table>

LEA

<table>
<thead>
<tr>
<th></th>
<th>LEA</th>
<th>LEA</th>
<th>LEA</th>
<th>LEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary</td>
<td>0.065 (0.002)</td>
<td>0.043 (0.001)</td>
<td>0.035 (0.001)</td>
<td>0.035 (0.001)</td>
</tr>
<tr>
<td>Primary</td>
<td>0.035 (0.001)</td>
<td>0.025 (0.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSOA</td>
<td>0.008 (0.000)</td>
<td>0.002 (0.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family (twin)</td>
<td>0.238 (0.007)</td>
<td>0.168 (0.005)</td>
<td>0.157 (0.005)</td>
<td></td>
</tr>
<tr>
<td>Pupil (twin)</td>
<td>0.160 (0.003)</td>
<td>0.157 (0.003)</td>
<td>0.150 (0.003)</td>
<td></td>
</tr>
<tr>
<td>Pupil (non-twin)</td>
<td>0.468 (0.001)</td>
<td>0.402 (0.002)</td>
<td>0.383 (0.001)</td>
<td>0.357 (0.001)</td>
</tr>
</tbody>
</table>

Using MCMC; 450,500 iterations and a burn-in of 50,000
Results

<table>
<thead>
<tr>
<th></th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons</td>
<td>−0.003 (0.001)</td>
<td>−0.003 (0.001)</td>
<td>0.001 (0.008)</td>
<td>−0.039 (0.007)</td>
</tr>
<tr>
<td>twin</td>
<td>0.177 (0.008)</td>
<td>0.179 (0.007)</td>
<td>0.162 (0.007)</td>
<td>0.154 (0.007)</td>
</tr>
<tr>
<td>pretest</td>
<td>0.730 (0.001)</td>
<td>0.729 (0.001)</td>
<td>0.701 (0.001)</td>
<td>0.641 (0.001)</td>
</tr>
<tr>
<td>pretest.twin</td>
<td>−0.040 (0.007)</td>
<td>0.000 (0.007)</td>
<td>−0.027 (0.006)</td>
<td>−0.020 (0.006)</td>
</tr>
<tr>
<td>female</td>
<td></td>
<td></td>
<td></td>
<td>0.184 (0.002)</td>
</tr>
<tr>
<td>Asian</td>
<td></td>
<td></td>
<td></td>
<td>0.429 (0.005)</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td>0.225 (0.006)</td>
</tr>
<tr>
<td>Chinese</td>
<td></td>
<td></td>
<td></td>
<td>0.556 (0.015)</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td>0.045 (0.005)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td>0.403 (0.010)</td>
</tr>
<tr>
<td>FSM</td>
<td></td>
<td></td>
<td>−0.248 (0.003)</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td></td>
<td></td>
<td>−0.012 (0.000)</td>
<td></td>
</tr>
<tr>
<td>SEN</td>
<td></td>
<td></td>
<td>−0.231 (0.003)</td>
<td></td>
</tr>
<tr>
<td>IDACI</td>
<td></td>
<td></td>
<td>−0.103 (0.001)</td>
<td></td>
</tr>
<tr>
<td>LEA</td>
<td></td>
<td>0.065 (0.002)</td>
<td>0.005 (0.001)</td>
<td>0.005 (0.001)</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td>0.043 (0.001)</td>
<td>0.035 (0.001)</td>
<td>0.025 (0.000)</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td>0.035 (0.001)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSOA</td>
<td></td>
<td>0.008 (0.000)</td>
<td>0.002 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Family (twin)</td>
<td>0.238 (0.007)</td>
<td>0.168 (0.005)</td>
<td>0.157 (0.005)</td>
<td></td>
</tr>
<tr>
<td>Pupil (twin)</td>
<td>0.160 (0.003)</td>
<td>0.157 (0.003)</td>
<td>0.150 (0.003)</td>
<td></td>
</tr>
<tr>
<td>Pupil (non-twin)</td>
<td>0.468 (0.001)</td>
<td>0.402 (0.002)</td>
<td>0.383 (0.001)</td>
<td>0.357 (0.001)</td>
</tr>
</tbody>
</table>

Using MCMC; 450,500 iterations and a burn-in of 50,000
Results

<table>
<thead>
<tr>
<th></th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
</tr>
</thead>
<tbody>
<tr>
<td>cons</td>
<td>-0.003 (0.001)</td>
<td>-0.003 (0.001)</td>
<td>0.001 (0.008)</td>
<td>-0.039 (0.007)</td>
</tr>
<tr>
<td>twin</td>
<td>0.177 (0.008)</td>
<td>0.179 (0.007)</td>
<td>0.162 (0.007)</td>
<td>0.154 (0.007)</td>
</tr>
<tr>
<td>pretest</td>
<td>0.730 (0.001)</td>
<td>0.729 (0.001)</td>
<td>0.701 (0.001)</td>
<td>0.641 (0.001)</td>
</tr>
<tr>
<td>pretest.twin</td>
<td>-0.040 (0.007)</td>
<td>0.000 (0.007)</td>
<td>-0.027 (0.006)</td>
<td>-0.020 (0.006)</td>
</tr>
<tr>
<td>female</td>
<td></td>
<td></td>
<td></td>
<td>0.184 (0.002)</td>
</tr>
<tr>
<td>Asian</td>
<td></td>
<td></td>
<td></td>
<td>0.429 (0.005)</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td>0.225 (0.006)</td>
</tr>
<tr>
<td>Chinese</td>
<td></td>
<td></td>
<td></td>
<td>0.556 (0.015)</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td>0.045 (0.005)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td>0.403 (0.010)</td>
</tr>
<tr>
<td>FSM</td>
<td></td>
<td></td>
<td>-0.248 (0.003)</td>
<td></td>
</tr>
<tr>
<td>age</td>
<td></td>
<td></td>
<td>-0.012 (0.000)</td>
<td></td>
</tr>
<tr>
<td>SEN</td>
<td></td>
<td></td>
<td>-0.231 (0.003)</td>
<td></td>
</tr>
<tr>
<td>IDACI</td>
<td></td>
<td></td>
<td>-0.103 (0.001)</td>
<td></td>
</tr>
<tr>
<td>LEA</td>
<td></td>
<td></td>
<td>0.005 (0.001)</td>
<td>0.005 (0.001)</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td>0.065 (0.002)</td>
<td>0.043 (0.001)</td>
<td>0.035 (0.001)</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td>0.035 (0.001)</td>
<td>0.025 (0.000)</td>
<td></td>
</tr>
<tr>
<td>LSOA</td>
<td></td>
<td>0.008 (0.000)</td>
<td>0.002 (0.000)</td>
<td></td>
</tr>
<tr>
<td>Family (twin)</td>
<td>0.238 (0.007)</td>
<td>0.168 (0.005)</td>
<td>0.157 (0.005)</td>
<td></td>
</tr>
<tr>
<td>Pupil (twin)</td>
<td>0.160 (0.003)</td>
<td>0.157 (0.003)</td>
<td>0.150 (0.003)</td>
<td></td>
</tr>
<tr>
<td>Pupil (non-twin)</td>
<td>0.468 (0.001)</td>
<td>0.402 (0.002)</td>
<td>0.383 (0.001)</td>
<td>0.357 (0.001)</td>
</tr>
</tbody>
</table>

Using MCMC; 450,500 iterations and a burn-in of 50,000
Variance partitioning coefficients

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C Twins</th>
<th>C Non-twins</th>
<th>D Twins</th>
<th>D Non-twins</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEA</td>
<td></td>
<td></td>
<td>1.2%</td>
<td>1.1%</td>
<td>1.3%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Secondary</td>
<td>13.9%</td>
<td></td>
<td>10.3%</td>
<td>9.1%</td>
<td>9.4%</td>
<td>8.3%</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td>8.4%</td>
<td>7.4%</td>
<td>6.7%</td>
<td>5.9%</td>
<td></td>
</tr>
<tr>
<td>LSOA</td>
<td></td>
<td></td>
<td>1.9%</td>
<td>1.7%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Family</td>
<td>59.8%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil</td>
<td>40.2%</td>
<td>86.1%</td>
<td>37.7%</td>
<td>80.8%</td>
<td>40.1%</td>
<td>84.2%</td>
</tr>
</tbody>
</table>

Research questions

1. How much of the shared environmental variation is due to family, school and area?
2. How much of the ‘pupil’ level variation in school effectiveness studies is really family level?
3. What happens when we try to explain some of the variation using pupil, family and LSOA level covariates?
Variance partitioning coefficients

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C Twins</th>
<th>C Non-twins</th>
<th>D Twins</th>
<th>D Non-twins</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEA</td>
<td></td>
<td></td>
<td>1.2%</td>
<td>1.1%</td>
<td>1.3%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Secondary</td>
<td>13.9%</td>
<td>10.3%</td>
<td>9.1%</td>
<td>9.4%</td>
<td>8.3%</td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>8.4%</td>
<td>7.4%</td>
<td>6.7%</td>
<td>5.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LSOA</td>
<td>1.9%</td>
<td>1.7%</td>
<td>0.5%</td>
<td>0.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>59.8%</td>
<td>40.4%</td>
<td></td>
<td>42.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil</td>
<td>40.2%</td>
<td>86.1%</td>
<td>37.7%</td>
<td>80.8%</td>
<td>40.1%</td>
<td>84.2%</td>
</tr>
</tbody>
</table>

Research questions

1. How much of the shared environmental variation is due to family, school and area?
Research questions

1. How much of the shared environmental variation is due to family, school and area?

2. How much of the ‘pupil’ level variation in school effectiveness studies is really family level?
Research questions

1. **How much of the shared environmental variation is due to family, school and area?**

2. **How much of the ‘pupil’ level variation in school effectiveness studies is really family level?**
Variance partitioning coefficients

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C Twins</th>
<th>C Non-twins</th>
<th>D Twins</th>
<th>D Non-twins</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEA</td>
<td></td>
<td></td>
<td>1.2%</td>
<td>1.1%</td>
<td>1.3%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Twins</td>
<td></td>
<td></td>
<td>13.9%</td>
<td>10.3%</td>
<td>9.4%</td>
<td>8.3%</td>
</tr>
<tr>
<td>Primary</td>
<td></td>
<td></td>
<td>8.4%</td>
<td>7.4%</td>
<td>6.7%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Secondary</td>
<td></td>
<td></td>
<td>1.9%</td>
<td>1.7%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>LSOA</td>
<td></td>
<td></td>
<td>59.8%</td>
<td>40.4%</td>
<td>42.0%</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td></td>
<td></td>
<td>40.2%</td>
<td>86.1%</td>
<td>40.1%</td>
<td>84.2%</td>
</tr>
</tbody>
</table>

Research questions

1. How much of the shared environmental variation is due to family, school and area?

2. How much of the ‘pupil’ level variation in school effectiveness studies is really family level?

What happens when we try to explain some of the variation using pupil, family and LSOA level covariates?
Using MCMC; 450,500 iterations and a burn-in of 50,000
Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels

Caveats

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma^2_u + \sigma^2_g$
- Twins may also be different from full sibling pairs
- Shared environment in womb they may elicit more similar environments
- Have same age sibling
- To what extent can we generalise to non-nuclear families?
Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma^2_u + \sigma^2_g$
- Twins may also be different to full sibling pairs
- shared environment in womb they may elicit more similar environments
- have same age sibling
- To what extent can we generalise to non-nuclear families?
Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats

- Our family effects are purely derived from twin pairs
Interpretation

Summary
- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats
- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may also be different to full sibling pairs
 - shared environment in womb
 - they may elicit more similar environments
 - have same age sibling
- To what extent can we generalise to non-nuclear families?
Interpretation

Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may also be different to full sibling pairs
Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may also be different to full sibling pairs
 - shared environment in womb
- To what extent can we generalise to non-nuclear families?
Summary
- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats
- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may also be different to full sibling pairs
 - shared environment in womb
 - they may elicit more similar environments

To what extent can we generalise to non-nuclear families?
Interpretation

Summary
- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats
- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may also be different to full sibling pairs
 - shared environment in womb
 - they may elicit more similar environments
 - have same age sibling

To what extent can we generalise to non-nuclear families?
Interpretation

Summary

- Around a third of the family level variation in Model A is really school or area level (mostly school)
- Around half the pupil level variation in Model B is really family level
- The covariates explain some variation at most levels
- Family and pupil still make up the largest, roughly equal proportions of variation
- Both school levels also remain important

Caveats

- Our family effects are purely derived from twin pairs
- The twins are a mix of MZ and DZ so we are not estimating $\sigma_u^2 + \sigma_g^2$
- Twins may also be different to full sibling pairs
 - shared environment in womb
 - they may elicit more similar environments
 - have same age sibling
- To what extent can we generalise to non-nuclear families?
2. What happens under stress?
Variance functions for stress

Data
- Data is from previous cohort, who took GCSEs in 2006
- Postcodes with more than 2 students excluded
- Continuous variables not standardized

Model

\[\text{GCSE}_{ijk} = \alpha + \beta_1 \text{pretest}_{ijk} + \beta_2 \text{twin}_{jk} + \beta_5 \text{stressor}_{jk} + \nu_0_k + u_2_{jk} \text{twin}_{jk} + e_2_{ijk} \text{twin}_{jk} + e_3_{ijk} \text{nontwin}_{jk} + u_4_{jk} \text{twin} \cdot \text{stressor}_{jk} + e_4_{ijk} \text{twin} \cdot \text{stressor}_{jk} + e_6_{ijk} \text{nontwin} \cdot \text{stressor}_{jk} \]
Data
- Data is from previous cohort, who took GCSEs in 2006
- Postcodes with more than 2 students excluded
- Continuous variables not standardized

Stressors
- Our main stressor was IDACI, an LSOA level variable
- It aims to measure income deprivation affecting children
- Other stressors included:
 - FSM eligibility
 - House moves

Model
Variance functions for stress

Data
- Data is from previous cohort, who took GCSEs in 2006
- Postcodes with more than 2 students excluded
- Continuous variables not standardized

Stressors
- Our main stressor was IDACI, an LSOA level variable
- It aims to measure income deprivation affecting children
- Other stressors included:
 - FSM eligibility
 - House moves

Model
\[
\text{GCSE}_{ijk} = \alpha + \beta_1 \text{pretest}_{ijk} + \beta_2 \text{twin}_{jk} + \beta_5 \text{stressor}_{jk} \\
+ \nu_{0k} + u_{2jk} \text{twin}_{jk} + e_{2ijk} \text{twin}_{jk} + e_{3ijk} \text{nontwin}_{jk} \\
+ u_{4jk} \text{twin} \cdot \text{stressor}_{jk} + e_{4ijk} \text{twin} \cdot \text{stressor}_{jk} \\
+ e_{6ijk} \text{nontwin} \cdot \text{stressor}_{jk}
\]
Variance functions for stress

Covariance structure

\[
\begin{bmatrix}
 \nu_{0k} \\
 u_{2jk} \\
 u_{4jk} \\
 e_{2ijk} \\
 e_{3ijk} \\
 e_{4ijk} \\
 e_{6ijk}
\end{bmatrix}
\sim N \left(0, \begin{bmatrix}
 \sigma^2_{\nu0} \\
 \sigma^2_{u2} & \sigma^2_{u4} \\
 \sigma^2_{e2} & 0 & \sigma^2_{e3} \\
 0 & \sigma^2_{e24} & 0 & \sigma^2_{e4} \\
 0 & 0 & \sigma^2_{e36} & 0 & \sigma^2_{e6}
\end{bmatrix} \right)
\]

Model

\[
\text{GCSE}_{ijk} = \alpha + \beta_1 \text{pretest}_{ijk} + \beta_2 \text{twin}_{jk} + \beta_5 \text{stressor}_{jk}
\]

\[
+ \nu_{0k} + u_{2jk} \text{twin}_{jk} + e_{2ijk} \text{twin}_{jk} + e_{3ijk} \text{nontwin}_{jk}
\]

\[
+ u_{4jk} \text{twin} \cdot \text{stressor}_{jk} + e_{4ijk} \text{twin} \cdot \text{stressor}_{jk}
\]

\[
+ e_{6ijk} \text{nontwin} \cdot \text{stressor}_{jk}
\]
Variance functions for stress

Covariance structure

\[
\begin{bmatrix}
 v_{0k}
 \\
 u_{2jk}
 \\
 u_{4jk}
\end{bmatrix}
\sim N(0, \begin{bmatrix}
 \sigma^2_{v0} \\
 \sigma^2_{u2} & \sigma^2_{u4}
\end{bmatrix})
\]

\[
\begin{bmatrix}
 e_{2ijk} \\
 e_{3ijk} \\
 e_{4ijk} \\
 e_{6ijk}
\end{bmatrix}
\sim N(0, \begin{bmatrix}
 \sigma^2_{e2} & 0 & 0 & 0 \\
 0 & \sigma^2_{e3} & 0 & 0 \\
 0 & 0 & \sigma^2_{e4} & 0 \\
 0 & 0 & 0 & \sigma^2_{e6}
\end{bmatrix})
\]

Model

\[\text{GCSE}_{ijk} = \alpha + \beta_1\text{pretest}_{ijk} + \beta_2\text{twin}_{jk} + \beta_5\text{IDACI}_{jk} + v_{0k} + u_{2jk}\text{twin}_{jk} + e_{2ijk}\text{twin}_{jk} + e_{3ijk}\text{nontwin}_{jk} + u_{4jk}\text{twin} \cdot \text{IDACI}_{jk} + e_{4ijk}\text{twin} \cdot \text{IDACI}_{jk} + e_{6ijk}\text{nontwin} \cdot \text{IDACI}_{jk}\]
Variance functions for IDACI
Interpreting the results

As IDACI increases,

We have this situation:

\[\beta_5 = -68.1 \]

Between family variation increases
Within family variation increases
The mean progress decreases

So at greater levels of deprivation, family becomes relatively more important in determining progress.
As IDACI increases,

- The mean progress decreases
 \[\beta_5 = -68.1 \]

We have this situation:

![Diagram showing progression vs. IDACI]

Between family variation increases
Within family variation increases
The mean progress decreases
\[\beta_5 = -68.1 \]

So at greater levels of deprivation, family becomes relatively more important in determining progress.
As IDACI increases,

- The mean progress decreases
 - \(\beta_5 = -68.1 \)

We have this situation:
Interpreting the results

As IDACI increases,

- Between family variation increases
- The mean progress decreases
 - $\beta_5 = -68.1$

We have this situation:
Interpreting the results

As IDACI increases,

- Between family variation increases
- The mean progress decreases
 \[\beta_5 = -68.1 \]

We have this situation:
Interpreting the results

As IDACI increases,
- Between family variation increases
- Within family variation increases
- The mean progress decreases
 \[\beta_5 = -68.1 \]

We have this situation:
As IDACI increases,
- Between family variation increases
- Within family variation increases
- The mean progress decreases
 - $\beta_5 = -68.1$

We have this situation:
Interpreting the results

As IDACI increases,

Between family variation increases
Within family variation increases
The mean progress decreases

\[\beta = -6.1 \]

We have this situation:

Progress

IDACI

So at greater levels of deprivation, family becomes relatively more important in determining progress.
As IDACI increases,
- Between family variation increases
- Within family variation increases
- The mean progress decreases
 \[\beta_5 = -68.1 \]

We have this situation:

- Between family variation increases more dramatically than within family variation
- So at greater levels of deprivation, family becomes relatively more important in determining progress
Results

Variance functions for IDACI
As IDACI increases,
- Between family variation increases
- Within family variation increases
- The mean progress decreases
 \[\beta_5 = -68.1 \]

We have this situation:

Between family variation increases more dramatically than within family variation
So at greater levels of deprivation, family becomes relatively more important in determining progress
We fitted the same model with different stressors:
- IMD
- FSM eligibility
- Ever moved house
- Number of house moves
- Time since house move

In almost all cases we see the same pattern.

We also fitted models with more than one stressor:
- e.g. IDACI and FSM eligibility

In these models, both stressors show the same pattern.
What’s going on? Possible explanations

Genetic explanation

- Some families have genes which help to maintain progress in the presence of stressors, while others do not

Environmental explanation
What's going on? Possible explanations

Genetic explanation
- **Some families** have genes which help to maintain progress in the presence of stressors, while others do not.
- In the absence of a stressor, the genes make little difference so there is not much variability.

Environmental explanation
- Some families, across all levels of the stressors, have factors that make it harder to be good parents.
- Alcoholism of parent, violent spouse.
- In the absence of stressors, even families with these factors can provide a good environment for progress.
- In the presence of stressors, families with these factors cannot do so → variability since some families have these factors and some don't.
What’s going on? Possible explanations

Genetic explanation

- Some families have genes which help to maintain progress in the presence of stressors, while others do not
- In the absence of a stressor, the genes make little difference so there is not much variability
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some families have the gene and some don’t

Environmental explanation
What’s going on? Possible explanations

<table>
<thead>
<tr>
<th>Genetic explanation</th>
<th>Environmental explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not.</td>
<td></td>
</tr>
<tr>
<td>In the absence of a stressor, the genes make little difference so there is not much variability.</td>
<td></td>
</tr>
<tr>
<td>In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don’t.</td>
<td></td>
</tr>
</tbody>
</table>
What’s going on? Possible explanations

Genetic explanation
- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not.
- In the absence of a stressor, the genes make little difference so there is not much variability.
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don’t.

Environmental explanation
- Some families, across all levels of the stressors, have factors that make it harder to be good parents.
 - alcoholism of parent
 - violent spouse
What’s going on? Possible explanations

Genetic explanation
- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not.
- In the absence of a stressor, the genes make little difference so there is not much variability.
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don’t.

Environmental explanation
- Some families, across all levels of the stressors, have factors that make it harder to be good parents:
 - alcoholism of parent
 - violent spouse
- In the absence of stressors, even families with these factors can provide a good environment for progress.
What’s going on? Possible explanations

Genetic explanation
- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not.
- In the absence of a stressor, the genes make little difference so there is not much variability.
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don’t.

Environmental explanation
- Some families, across all levels of the stressors, have factors that make it harder to be good parents.
 - alcoholism of parent
 - violent spouse
- In the absence of stressors, even families with these factors can provide a good environment for progress.
- In the presence of stressors, families with these factors cannot do so → variability since some families have these factors and some don’t.
What’s going on? Possible explanations

Genetic explanation
- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not.
- In the absence of a stressor, the genes make little difference so there is not much variability.
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don’t.

Environmental explanation
- Children in families compete for resources.
What’s going on? Possible explanations

Genetic explanation
- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not.
- In the absence of a stressor, the genes make little difference so there is not much variability.
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don’t.

Environmental explanation
- Children in families compete for resources.
- In the absence of stressors, there are enough resources for the needs of all children.
What's going on? Possible explanations

Genetic explanation
- Within families, some children have genes which help to maintain progress in the presence of stressors, while others do not.
- In the absence of a stressor, the genes make little difference so there is not much variability.
- In the presence of a stressor, the genes make a big difference so there is variability arising from the fact that some children have the gene and some don't.

Environmental explanation
- Children in families compete for resources.
- In the absence of stressors, there are enough resources for the needs of all children.
- In the presence of stressors, there are fewer resources and some children will have their needs met while others will not → variability since those getting more resources can make more progress.
References

