Automatic variable selection in hierarchical models: application to durations of untreated psychoses

Dave Lunn ¹ James Kirkbride ²

¹MRC Biostatistics Unit, Cambridge, UK

²Dept. Psychiatry, University of Cambridge, UK

July 1, 2008

- DUP data
- Random effects models
- Mixed effects models
- Variable selection
- Interpretation of results

- Background
- DUP data
- Random effects models
- Mixed effects models
- Variable selection
- Interpretation of results

- Background
- DUP data
- Random effects models
- Mixed effects models
- Variable selection
- Interpretation of results

- Background
- DUP data
- Random effects models
- Mixed effects models
- Variable selection
- Interpretation of results

- Family involvement in help-seeking associated with shorter duration of untreated psychoses (DUP)
- Are factors at neighbourhood level relevant to DUP?
- Recent study in Netherlands found +ve relationship between hospital admissions and neighbourhood level of informal social control
- Perhaps neighbourhoods with greater social cohesion are associated with shorter DUPs?

- Family involvement in help-seeking associated with shorter duration of untreated psychoses (DUP)
- Are factors at neighbourhood level relevant to DUP?
- Recent study in Netherlands found +ve relationship between hospital admissions and neighbourhood level of informal social control
- Perhaps neighbourhoods with greater social cohesion are associated with shorter DUPs?

- Family involvement in help-seeking associated with shorter duration of untreated psychoses (DUP)
- Are factors at neighbourhood level relevant to DUP?
- Recent study in Netherlands found +ve relationship between hospital admissions and neighbourhood level of informal social control
- Perhaps neighbourhoods with greater social cohesion are associated with shorter DUPs?

- Family involvement in help-seeking associated with shorter duration of untreated psychoses (DUP)
- Are factors at neighbourhood level relevant to DUP?
- Recent study in Netherlands found +ve relationship between hospital admissions and neighbourhood level of informal social control
- Perhaps neighbourhoods with greater social cohesion are associated with shorter DUPs?

July 1, 2008

DUP data

Data from SE London centre of ÆSOP first episode psychoses study

- 314 durations from individuals in 32 electoral wards
- ▶ Mode number of durations = 7; min = 1, max = 31
- Durations range from 1 day to 9118 days (25 years) median = 70 days, mean = 450 days!!
- Distribution a little skewed perhaps...

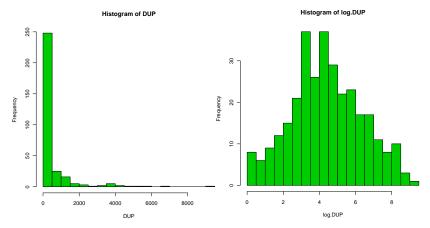
DUP data

- Data from SE London centre of ÆSOP first episode psychoses study
- 314 durations from individuals in 32 electoral wards
- Mode number of durations = 7; min = 1, max = 31
- Durations range from 1 day to 9118 days (25 years) median = 70 days, mean = 450 days!!
- Distribution a little skewed perhaps...

DUP data

- Data from SE London centre of ÆSOP first episode psychoses study
- 314 durations from individuals in 32 electoral wards
- Mode number of durations = 7; min = 1, max = 31
- Durations range from 1 day to 9118 days (25 years) median = 70 days, mean = 450 days!!
- Distribution a little skewed perhaps...

Distribution of DUPs



Measurement error model?

Covariates

Neighbourhood level	Individual level
population density	◊ gender
o proportion non-white British	◊ type of disorder
oportion black Caribbean	(affective or broad schizophrenia)
oportion black African	◊ ethnicity, either binary or 7-level
voter turnout	◊ relationship status (3-level)
segregation between white	◊ highest ever occupation (6-level)
and non-white British	♦ age
 proportion single 	◊ family involvement
oportion of Asian groups	\diamond mode of onset, binary or 6-level
 multiple deprivation 	
◊ social capital	
◊ social disorganisation	
◊ social cohesion	

July 1, 2008

Basic random effects model

▶ Let T_{ij} = log(DUP_{ij}), where DUP_{ij} is the DUP for individual j in neighbourhood i (i = 1, ..., N = 32, j = 1, ..., n_i)

$$\begin{aligned} T_{ij} &= \alpha + u_i + e_{ij} \\ u_i &\sim \mathsf{N}(0, \sigma_u^2), \ e_{ij} &\sim \mathsf{N}(0, \sigma_e^2) \end{aligned}$$

• Or, equivalently: $T_{ij} \sim N(\mu_i, \sigma_e^2)$, $\mu_i = \alpha + u_i$

Could also allow spatially correlated random effects, e.g.

$$u_i = r_i + s_i, \ r_i \sim N(0, \sigma_r^2), \ \mathbf{s} \sim CAR(\sigma_s^2)$$

July 1, 2008

Basic random effects model

▶ Let T_{ij} = log(DUP_{ij}), where DUP_{ij} is the DUP for individual j in neighbourhood i (i = 1, ..., N = 32, j = 1, ..., n_i)

$$T_{ij} = \alpha + u_i + e_{ij}$$
$$u_i \sim \mathsf{N}(0, \sigma_u^2), \ e_{ij} \sim \mathsf{N}(0, \sigma_e^2)$$

▶ Or, equivalently: $T_{ij} \sim N(\mu_i, \sigma_e^2)$, $\mu_i = \alpha + u_i$

Could also allow spatially correlated random effects, e.g.

$$u_i = r_i + s_i, \ r_i \sim N(0, \sigma_r^2), \ \mathbf{s} \sim CAR(\sigma_s^2)$$

Basic random effects model

▶ Let T_{ij} = log(DUP_{ij}), where DUP_{ij} is the DUP for individual j in neighbourhood i (i = 1, ..., N = 32, j = 1, ..., n_i)

$$\begin{aligned} T_{ij} &= \alpha + u_i + e_{ij} \\ u_i &\sim \mathsf{N}(0, \sigma_u^2), \ e_{ij} &\sim \mathsf{N}(0, \sigma_e^2) \end{aligned}$$

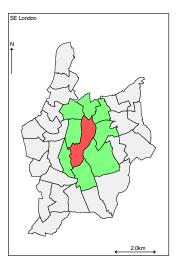
- ▶ Or, equivalently: $T_{ij} \sim \mathsf{N}(\mu_i, \sigma_e^2)$, $\mu_i = \alpha + u_i$
- Could also allow spatially correlated random effects, e.g.

$$u_i = r_i + s_i, \ r_i \sim N(0, \sigma_r^2), \ \mathbf{s} \sim CAR(\sigma_s^2)$$

Basic CAR model

$$s_i | \mathbf{s}_{-i} \sim \text{Normal} \left(\frac{1}{\nu_i} \sum_{j \in \delta_i} s_j, \frac{\sigma_s^2}{\nu_i} \right)$$

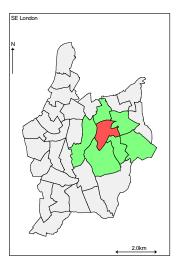
 $\delta_i = \text{set of neighbours, area } i$
 $\nu_i = \text{no. of neighbours, area } i$



Basic CAR model

$$s_i | \mathbf{s}_{-i} \sim \text{Normal} \left(\frac{1}{\nu_i} \sum_{j \in \delta_i} s_j, \frac{\sigma_s^2}{\nu_i} \right)$$

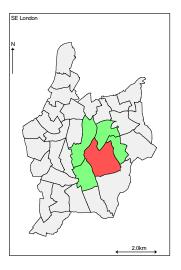
 $\delta_i = \text{set of neighbours, area } i$
 $\nu_i = \text{no. of neighbours, area } i$



Basic CAR model

$$s_i | \mathbf{s}_{-i} \sim \text{Normal} \left(\frac{1}{\nu_i} \sum_{j \in \delta_i} s_j, \frac{\sigma_s^2}{\nu_i} \right)$$

 $\delta_i = \text{set of neighbours, area } i$
 $\nu_i = \text{no. of neighbours, area } i$



BUGS code

. . .

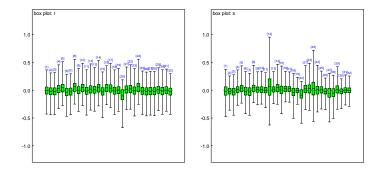
```
model {
  for (i in 1:N) {
    for (j in start[i]:(start[i + 1] - 1)) {
        T[j] ~ dnorm(mu[i], tau.e)
        }
        mu[i] <- alpha + u[i]
        u[i] ~ dnorm(0, tau.u)
    }
}</pre>
```

July 1, 2008

BUGS code

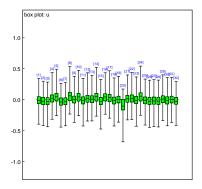
```
model {
  for (i in 1:N) {
    for (j in start[i]:(start[i + 1] - 1)) {
      T[j] ~ dnorm(mu[i], tau.e)
    }
    mu[i] <- alpha + r[i] + s[i]
    r[i] \sim dnorm(0, tau.r)
  s[1:N] ~ car.normal(adj[], weights[], nu[], tau.s)
  . . .
```

Uncorrelated and spatially correlated random effects



 $\hat{\alpha} = 4.39$ (4.15, 4.62), $\hat{\sigma_e} = 1.97$ (1.82, 2.14) $\hat{\sigma_r} = 0.129$ (0.00715, 0.440), $\hat{\sigma_s} = 0.185$ (0.00592, 0.696)

Uncorrelated random effects only



$$\hat{\alpha} = 4.39 \quad (4.16, 4.62)$$

 $\hat{\sigma_e} = 1.97 \quad (1.83, 2.14)$
 $\hat{\sigma_u} = 0.120 \quad (0.0065, 0.419)$

Which model is better?

- Spiegelhalter et al (2002, RSSB) propose Deviance Information Criterion (DIC) for comparing models
- ► Model fit measured by posterior mean deviance D
 (deviance = -2 × log-likelihood)
- ▶ Penalized by 'effective number of parameters' p_D = D − D(θ) (posterior mean deviance − deviance evaluated at posterior mean parameters)

$$\blacktriangleright \text{ DIC} = \overline{D} + p_D = D(\overline{\theta}) + 2p_D$$

Models with smaller DIC are better supported by data...

Compare DICs

Model	\overline{D}	$D(\overline{ heta})$	<i>p</i> _D	DIC
${\sf Uncorr.} + {\sf spat.} \; {\sf corr.}$	1308.14	1308.14	6.071	1314.21
Uncorrelated only	1308.17	1304.01	4.158	1312.33
No area-level effects	1308.63	1306.66	1.97	1310.60

Compare DICs

Model	\overline{D}	$D(\overline{ heta})$	<i>p</i> _D	DIC
${\sf Uncorr.} + {\sf spat.} \; {\sf corr.}$	1308.14	1308.14	6.071	1314.21
Uncorrelated only	1308.17	1304.01	4.158	1312.33
No area-level effects	1308.63	1306.66	1.97	1310.60

```
model {
    for (i in 1:N) {
        for (j in start[i]:(start[i + 1] - 1)) {
            T[j] ~ dnorm(mu[i], tau.e)
        }
        mu[i] <- alpha
    }
....</pre>
```

```
\hat{\alpha} = 4.39 (4.17, 4.61)
\hat{\sigma_e} = 1.97 (1.83, 2.14)
```

Variable selection

► Model:

$$T_j \sim N(\mu_j, \sigma_e^2), \ \mu_j = \alpha + X_j \beta, \ j = 1, ..., N_{tot} = 314$$

where X_j is a row-vector of area-level and/or individual-level covariates for observation j (X_j is j^{th} row of matrix **X**)

- ► Which covariates should form the columns of X?
- Forward/backward selection can be unreliable
- Include all of them?
 - interpretability issues
 - spurious effects

Variable selection

► Model:

$$T_j \sim N(\mu_j, \sigma_e^2), \ \mu_j = lpha + X_j eta, \ j = 1, ..., N_{tot} = 314$$

where X_j is a row-vector of area-level and/or individual-level covariates for observation j (X_j is j^{th} row of matrix **X**)

- ► Which covariates should form the columns of X?
- Forward/backward selection can be unreliable
- Include all of them?
 - interpretability issues
 - spurious effects

July 1, 2008

Variable selection continued

- Let Z denote the matrix of *all* area- and individual-level covariates
- Let ϕ denote the set of column indices that form **X**:

$$\mathsf{X}_{jk} = \mathsf{Z}_{j\phi_k}, \ k = 1, ..., d = \dim(\phi)$$

- Perhaps we can 'estimate' ϕ ?
- Note, however, that it has variable dimension, as has β (X_j expands and contracts as covariates are included in and discarded from the model)
- Can handle in Bayesian setting using 'reversible jump'

July 1, 2008

Variable selection continued

- Let Z denote the matrix of *all* area- and individual-level covariates
- Let ϕ denote the set of column indices that form **X**:

$$X_{jk} = Z_{j\phi_k}, \ k = 1, ..., d = \dim(\phi)$$

- Perhaps we can 'estimate' ϕ ?
- ► Note, however, that it has variable dimension, as has β (X_j expands and contracts as covariates are included in and discarded from the model)
- Can handle in Bayesian setting using 'reversible jump'

Priors for variable selection

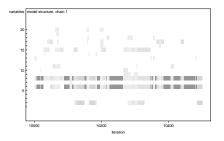
- \blacktriangleright Need to specify priors for $\beta,\,\phi$ and d
- Typically

$$\begin{split} \beta | d &\sim \mathsf{MVN}_d(\mathbf{0}_d, \sigma_\beta^2 \mathbf{I}_d) \quad (\text{e.g. } \sigma_\beta^2 = 50) \\ \phi | d &\sim \mathsf{Uniform} \Rightarrow p(\phi | d) = \frac{d! (Q - d)!}{Q!} \\ d &\sim \mathsf{Poisson}(.), \quad d &\sim \mathsf{Binomial}(p, Q) \quad (\text{e.g. } p = 0.5) \end{split}$$

BUGS code

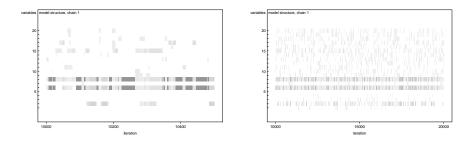
```
model {
    for (i in 1:N) {
        for (j in start[i]:(start[i + 1] - 1)) {
            T[j] ~ dnorm(mu[j], tau.e)
        }
    }
    mu[1:N.tot] <- jump.lin.pred(X[,], d, prec)
    d ~ dbin(0.5, Q)
    ...
}</pre>
```

BUGS output



var #2 = affective/broad schizophrenia (binary)var #6 = age (continuous) var #8 = mode of onset (6-level)

BUGS output



var #2 = affective/broad schizophrenia (binary)
var #6 = age (continuous)
var #8 = mode of onset (6-level)

BUGS output continued

model structure

ç

00000101000000000000
0100010100000000000
0000010100000100000
0100010100000100000
00000101000010000000

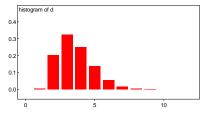
posterior prob. 0.1943107039 0.09628279883 0.04008329863

0.1943107039 0.2905935027 0.3306768013 0.0231153686 0.3537921699 0.02144314869 0.3752353186

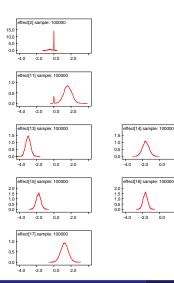
cumulative prob.

variable no.	marginal prob.
1	0.02665139525
2	0.3389046231
3	0.02906497293
4	0.0168971262
5	0.0
6	0.9702936277
7	0.03944814661
3	1.0
Ð	0.08227821741

l prob.		
139525		
46231		
497293		
71262		
36277		
814661		



Effect sizes



 $\hat{\sigma_e}: 1.97 \rightarrow \textbf{1.50}$

affective? $\mathbb{E}[\beta_2|2 \in \phi, T] = -0.488$

age $\mathbb{E}[\beta_{11}|6 \in \phi, T] = 1.62$

sudden onset precipitous $\mathbb{E}[\beta_{13}|8 \in \phi, T] = -3.00 \quad \mathbb{E}[\beta_{14}|8 \in \phi, T] = -1.63$

acute, no symptomsacute, symptoms $\mathbb{E}[\beta_{15}|8 \in \phi, T] = -1.79$ $\mathbb{E}[\beta_{16}|8 \in \phi, T] = -1.68$

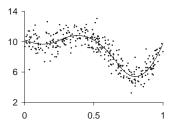
no clear demarcation $\mathbb{E}[eta_{17}|\mathbf{8}\in\phi,T]=1.24$

2.0

2.0

Comments

- Can use for selecting 'best' model or for averaging inferences over all (or some) models – Bayesian Model Averaging
- Advisable to transform all covariates onto same scale
- Care needed when choosing priors sensitivity
- Can also use 'reversible jump' for other modelling challenges...
 e.g. controlling for complex covariate effects



Acknowledgements

- Joint work with James Kirkbride in Dept. Psychiatry, University of Cambridge
- Thanks to Craig Morgan, Julia Lappin, Paul Fearon and Paola Dazzan (Institute of Psychiatry, King's College London) for the DUP data

References

- DIC paper: Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion), *Journal of the Royal Statistical Society, Series B*, **64**, 583–639
- WinBUGS website: http://www.mrc-bsu.cam.ac.uk/bugs/
- OpenBUGS website: http://mathstat.helsinki.fi/openbugs/
- WinBUGS Development website (e.g. Jump): http://www.winbugs-development.org.uk/