
Analysing Differential School Effectiveness Through
Multilevel and Agent-Based Modelling

Elio Marchione, Mauricio Salgado and Nigel Gilbert

CRESS: Centre for Research in Social Simulation, Department of Sociology, University of
Surrey, Guildford, Surrey, GU2 7XH, United Kingdom,

email: {e.marchione, m.salgado, n.gilbert}@surrey.ac.uk

Abstract. Multilevel Models (MLM) have pioneered the analysis of hierarchical
data of two or more levels. Agent-Based Models (ABM) are also used to anal-
yse social phenomena in which there are two or more levels involved. This paper
addresses a comparison between MLM and ABM. To provide a basis of com-
parison, we focus on differential school effectiveness analysis, where MLM has
been well studied, using data from the London Educational Authority’s Junior
Project. A MLM is fitted and an ABM of pupils’ educational attainment using
a social network structure is built. The paper reports the results of both models
and compares their performances in terms of predictive and explanatory power.
Although the fitted MLM outperforms the proposed ABM, the latter still offers a
reasonable fit and provides a causal mechanism to explain differences in school
performance that is absent in the MLM.
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1 Introduction

During the last thirty years education researchers have developed models for judging
the comparative performance of schools, in studies of what has become known as dif-
ferential school effectiveness [1, 2]. These variable-based models, which have achieved
great sophistication, allow the researchers to identify the extent to which schools im-
prove pupils’ educational attainment. Among those models, Multilevel Models (MLM)
are very popular, since they allow the analysis of data that have a hierarchical structure,
with two or more ‘levels’ (e.g., pupils and schools) [3]. However, despite their sophisti-
cation, variable-based models do not provide causal explanations for the observed social
phenomenon [4]. Whether a MLM (or any statistical model) is able to identify causal ef-
fects depends largely on the availability of longitudinal data on likely causal influences,
such as teacher-pupil and pupil-pupil interactions, and detailed knowledge about the un-
derlying processes [5]. Of course, such information, which would allow researchers to
formulate more complex models (closer to causal models), is rarely available. In the ab-
sence of such data, MLM are still well-suited to identify differences among groups, but
they cannot explain why those differences might emerge in the first place, since they do
not uncover the generative mechanisms that bring them about. When researchers want
to understand why some social phenomenon emerges but they do not have access to



precise longitudinal data, agent-based modelling (ABM) might be the best alternative.
ABM is a computational method to experiment with models composed of autonomous
agents that interact within an environment [6]. For instance, researchers might use ABM
to explain differential school effectiveness by focusing on the dynamics of the social
networks that shape and are shaped by pupils’ interactions within and outside school.
Whilst ABM is explanatory, MLM is a sophisticated way of description and hypotheses
testing. The comparison and integration of multivariate analysis, such as MLM, and the
modelling of generative mechanisms, such as ABM, is an important methodological
issue.

This paper explores that possibility by formalising an ABM to explain differences
in school effectiveness. It describes an ABM to understand the effects of pupils’ in-
teractions in educational attainment using a network structure and a methodological
strategy to assist with the comparison between MLM and ABM. We begin this paper
with a brief account of MLMs in education research (Section 2). Then, we describe the
data we are using (Section 3) and we fit a MLM to evaluate possible group effects and
the extent to which differential school effectiveness is present in the data (Section 4).
Later, we present an ABM to explain differential school effectiveness, describing the
model entities, interactions and main dynamics (Section 5). The last part of the paper
presents a comparison between the modelling techniques taking into account their pre-
dictive power (Section 6). It concludes with some remarks about how the analysis could
be extended (Section 7).

2 Multilevel models in education research

In the context of educational research, MLM were developed to adjust simple compar-
isons of school mean values by using measures of pupils’ prior achievement and other
variables to take account of selection and other procedures that are associated with
pupils’ achievement, but not related to any effect that the schools themselves may have
on achievement [7, 8]. A simple two-level, random intercept model based on data from
a random sample of schools can be written as follows, where subscript i refers to the
pupil, and j to the school:

yij = β0 + β1xij + uj + eij , uj ∼ N
(
0, σ2

u

)
, eij ∼ N

(
0, σ2

e

)
; (1)

where yij and xij respectively are the response variable and prior attainment, and uj
is an underlying school effect (which is associated with school organization, teaching,
etc.). This model assumes that eij and uj are uncorrelated and also uncorrelated with
any explanatory variable—i.e. it assumes that any possible dependences that may result
from, for example, school selection mechanisms are accounted for. Posterior estimates
ûj with associated confidence intervals are typically used to rank schools in ‘league
tables’ or used as ‘screening devices’ in school improvement programmes.

When a MLM is used, it is assumed that the group level makes a difference that
explains the total variance of the dependent variable [9]. It is useful to measure how
important the group level differences are (i.e., to identify the importance of the ‘school
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effect’), or the proportion of the total variance accounted by the group level. A conve-
nient summary of this effect is the ‘interclass-correlation’ coefficient (ICC), given by
the formula

ρ =
σ2
u

σ2
u + σ2

e

(2)

Model 1 can be elaborated by introducing further covariates such as socio-economic
background or peer group characteristics, to make additional adjustments, satisfy the
distributional assumptions or investigate interactions. In addition, it is typically found
that models such as Model 1 require random coefficients, where, for example, the coef-
ficient of prior achievement varies randomly across schools. In this case, using a more
general notation, we have

yij = β0ij + β1jxij ,

β0ij = β0 + u0j + eij ,

β1j = β1 + u1j ,

eij ∼ N
(
0, σ2

e

)
,

(
u0j
u1j

)
∼ N (0, Ω) , Ω =

(
σ2
u0

σu01 σ
2
u1

)
.

(3)

The Multilevel Model 3 may also be extended to include further levels of hierarchy,
such as education board or authority, and random factors which are not contained within
a simple hierarchy, such as area of pupil residence or school attended during a previous
phase of education. Such designs are known as ‘cross-classification’. [10].

An ABM that hopes to explain school effectiveness should describe a similar pat-
tern, that is, it should reproduce the school effects or differences in the school effec-
tiveness that are in the data as shown by a pattern of high interclass-correlation. The
advantage of complementing MLM with a ‘bottom-up’ approach lies not only in its
power to replicate some previous discoveries, but also in the the possibility of testing
hypothesised causal mechanisms that might bring about the differences in school effec-
tiveness.

3 Data

We use a subsample from the The London Education Authority’s Junior School Project
Data for pupils’ mathematics progress over 3 years from entry to junior school to the
end of the third year in junior school [1]. This was a longitudinal study of around 2000
children. Our subsample consists of 887 pupils from 48 schools, with five relevant vari-
ables, namely:

– School ID, an identification number assigned to each school, from 1 to 48,
– Social Class, a variable representing father’s occupation, where ‘Non Manual Oc-

cupation’ = 1 and ‘Other Occupation’ = 0,
– Gender, a variable representing pupils’ gender, where ‘Boy’ = 1 and ‘Girl’ = 0, and
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– Math 3 and Math 5, pupil’s score in math tests in year 3 and in year 5 respectively,
with a range from 0 to 40.

These data enable us to formulate a two-level model (pupils grouped in schools).
In order to establish whether a MLM is appropriate, we estimated an unconditional
means model [11], which does not contain any predictors but includes a random inter-
cept variance term for groups, and which is defined as Yij = y00 + u0j + rij , where
the dependent variable is a function of a common intercept y00 and two error terms:
the between-group error term, u0j , and the within-group error term, rij . This model
is useful since we can get two estimates of variance from it: τ00 for how much each
group’s intercept varies from the overall intercept (y00), and σ2 for how much each in-
dividual score differs from the group mean. An analysis of this model showed that the
ICC (see Equation 2) equals 0.119, so an important portion of the variance (≈ 12%)
is explained by the pupils’ group (i.e., school) membership. Further, the overall group
mean reliability test [12] of the outcome variable equals 0.67, although several schools
have quite low estimates. In fact, just 22 over 48 schools have group mean reliability
over 0.7, which is the conventional value to determine whether groups can be reliably
differentiated. Finally, we get from our unconditional means model that the intercept
variance τ00 is significantly different from zero, χ2(3) = 52.3, p < .0001. Therefore,
the analysis shows that fitting a MLM is a sensible decision.

However, given the great heterogeneity in group mean reliability among the schools,
subsequent analysis and modelling was confined to those 22 schools that had high es-
timates in this test, representing 558 pupils. By doing so, we will base our exploratory
analysis on data that contains schools that are reliably different one from another.

4 Fitting a Multilevel Model

The multilevel models used for the analysis of the second maths test scores (year 5) were
elaborated to take into account relevant background factors and prior attainment (i.e.,
maths scores in year 3). The MLM were built in the Statistical Software R [13], using
the package nlme. The parameter estimation was carried out by using the algorithm
Log-Cholesky [14]. Models were compared in order to evaluate their overall fit. In
Table 1, Model 0 is a base model, with no predictors but just random intercepts. Model
1 considers one predictor, previous attainment, and the intercepts of the groups were
allowed to vary randomly. Model 2 adds two background factors for each pupil, gender
and social class, to the previous model. Finally, Model 3 considers previous attainment,
background factors and, additionally, the coefficients for previous attainment, which
were allowed to vary randomly across the 22 schools. The results shown in Table 1
establish that Model 3, which allows random coefficients for previous attainment, has a
significantly better fit to the data than Model 0, Model 1 and Model 2.

The results obtained from fitting Model (3) are shown in Table 2. The average inter-
cept across all the schools, β0, equals 12.65 (std. error 1.79) and the average slope for
Math 3 across the 22 schools β1 equals 0.6 (std. error 0.05). Both parameters are signif-
icant. The individual school slopes, u1j , vary around the average slope with a standard
deviation estimated as 0.14. The intercepts of the individual schools, u0j , also differ,
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Table 1. Comparison of Fitted Models

df AIC BIC log Lik

Models

Model 0 3 3858.127 3871.257 −1926.064
Model 1 4 3660.438 3677.945 −1826.219
Model 2 6 3659.913 3686.174 −1823.957
Model 3 8 3657.157 3692.170 −1820.578

Tests χ2 p-value

0 vs 1 199.689 < 0.001
1 vs 2 4.525 0.104
2 vs 3 6.757 0.034

with a standard deviation estimated as 6.04. In addition, there is a negative covariance
between intercepts and slopes, σu01, estimated as −0.98, suggesting that schools with
higher intercepts tend to have lower slopes. Finally, the pupils’ individual scores vary
around their schools’ lines by quantities eij , the level 1 residuals, whose standard devi-
ation is estimated as 5.17.

The two control variables included in the model, gender and social class, perform
differently. Only social class (i.e., ‘Nonman’ in Table 2) makes a contribution to the
model, with an estimated regression coefficient of 1.17 (std. error 0.53, p < 0.05). This
means that pupils whose father’s occupation is non-manual have an expected advantage
of 1.17 points in Math 5 in comparison to those students whose father’s occupation
is manual. On the other hand, gender (i.e., ‘Boy’ in Table 2) does not contribute to
the predictive power of the model, since its regression coefficient is not significantly
different from zero.

With the information obtained from the MLM, predictions might be made for every
pupil in one of the 22 schools. For example, consider a boy student from school 32,
whose previous attainment in mathematics at year 3 was 22, and whose father’s occu-
pation is classified as manual. From the MLM we know that the group-intercept for this
school, û0,32 is 6.7869 and its group-slope for previous attainment û1,32 is −0.1418.
These values may be incorporated into Equation 3 to obtain the predicted value in Math
5 for this student as ≈ 29.5.

5 An Agent-Based Model

The ABM we propose addresses the problem of explaining the differences in school
effectiveness by taking into account the inputs of knowledge or feedback that every
pupil receives from her or his social environment in relation to one specific subject they
are supposed to learn. Thus, the model considers the relevant social network in which
the pupil is embedded. Furthermore, in order to establish comparisons and possible
integrations between this ABM and the MLM explained in Section 4, we empirically
calibrated the former using the same data we referred to in Section 3. The ABM was
built in NetLogo 4.1.2 [15].
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Table 2. Parameters of Random Slope Model for Maths Attainment in Year 5

Parameters (Outcome Variable: Math 5)

Random Effects Parameters
Estimate

St. Dev. (σ) Intercept (u0j) 6.04
Math 3 (u1j) 0.14

Cov. (σu01) Math 3*Intercept −0.98
Residual (eij) 5.17

Fixed Effects
Estimate Std. Error

Coefficients (βn) Intercept (β0) 12.65∗∗∗ 1.79
Math 3 (β1) 0.60∗∗∗ 0.05
Nonman (β2) 1.17∗ 0.53
Boy (β3) −0.02 0.44

Note. ∗∗∗ = p < 0.001, ∗∗ = p < 0.01, ∗ = p < 0.05.

5.1 Theoretical framework

The importance of taking into account the network in which a pupil is embedded in
order to explain her or his educational attainment is well established in the literature.
Since the observational study carried out by Rist [16] in the seventies, educational re-
searchers have been aware of the impact the student-teacher relationship might have on
pupils’ learning. Thus, schools where teachers have higher expectations regarding the
future of their students might perform better compared to others where teachers have
lower expectations [17]. These expectations determine which pupils are defined by the
teacher as ‘fast learners’ and which ones as ‘slow learners’. In this way, teachers’ be-
haviour contributes to a ‘self-fulfilling prophecy’, that is, pupils who are considered
‘slow learners’ in advance receive less attention and educational feedback, and con-
sequently, they perform worse compared to pupils who are considered ‘fast learners’.
Equally important are the pupils’ characteristics within the classroom, for which the ef-
fect on children’s educational achievement has also been well documented. Beckerman
and Good [18] showed that classrooms in which more than a third of the children were
‘high-aptitude’ students and less than a third were ‘low-aptitude’ performed better than
those classrooms in which the opposite was true. Their results indicated that both high-
and low- aptitude students in the first kind of classroom had greater achievement gains
than comparable students in less ‘favourable classrooms’. These findings are consistent
with the ‘peer-effect’ hypothesis, something that has been modelled using Social Net-
work Analysis [19] (however, see [20] for disconfirmatory evidence of peer-effect on
educational achievement). Finally, the cultural capital that pupils’ families possess has
an important effect on students’ performance [21, 22]. Thus, previous research suggests
that we should focus on three dimensions to explain school differential effectiveness:
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(a) the educational feedback that pupils receive from their teachers; (b) pupil-pupil in-
teractions and (c) pupils’ cultural capital.

The previous three social dimensions of education are the elements we aim to
model. To do so, we define a social mechanism to explain how these dimensions are
related within the schools. This mechanism gives an account of the way in which pupils
interact among them and create groups with other similar to them in those dimensions.
We refined Resnick and Wilensky’s model [23] to replicate this group formation mech-
anism. Students form groups with others similar to them (the homophily principle [24])
following group formation rules present at the school level. We assume that these rules
are stable and similar for all the individuals within the school [25]. We are not interested
in giving an account of the emergence of these rules; we take for granted they exist. In
the next section we describe the proposed ABM in detail.

5.2 Model description

The ABM was designed following two basic assumptions. The first concerns the way in
which pupils’ learning of one specific subject evolves over time. It seems reasonable to
assume that this learning can be modelled as a logarithmic function of the educational
feedback received on the subject. Thus, there is an initial period of rapid increase, fol-
lowed by a period where the growth in learning slows (evidence supporting this pattern
of learning may be found in [26]).

0 200 400 600 800 1000

Teacher Feedback
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20 Maximum student’s mark after math3

Fig. 1. Simulated Pupils’ Learning Curve

In order to model pupils’ learning in maths from year 3 to year 5, we define a
students’ learning curve. Firstly, we assume that learning maths is a continuous process
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in which the student receives feedback on the subject from the teacher, that is, the
amount of teaching time or teachers’ reward-directed behaviour towards the pupils.
This learning process starts at the first maths lesson, lesson 0, and finishes when the
knowledge of maths is measured in year 5 (or Math 5). Although we do not have any
real measurement of the educational feedback involved in this process, it is plausible to
know it (Rist measured these elements in his observational study, [16]). Given that such
information is absent in our data, we arbitrarily define 1,000 as the amount of feedback
that the entire learning process involves. Figure 1 shows the students’ learning curve
employed in the ABM. Simulated students’ marks are worked out as a function of the
amount of teachers’ feedback that students have undertaken. We also assume that when
the test Math 3 is applied, students have learned half of the topics they were supposed
to learn. Further, since both Math 3 and Math 5 range between 0 and 40, we transform
Math 3 by dividing it by 2.

Secondly, we assume that the feedback that students receive from their teachers
depends on the socialisation processes within their schools. By socialisation we mean
all those practices and rules that eventually generate stable groups of students. A group
is stable when its members do not want to leave it, that is, they are ‘happy’ as members
of the specific group. Let gk be a stable group in a school j and sik a student in such
a group. Let math3k be the average of Math 3 marks of group gk, then the amount of
feedback that the students in group k receive is given by the following equation:

tk =
(
e2·math3k

) 1
ϑ (4)

where ϑ in the exponent allows us to fit a logarithmic function that maps ‘Teacher
Feedback’ into ‘Mark’ (see Figure 1). Under this condition, ϑ ≈ 5.790593; since we
know that log(1, 000ϑ) ≈ 40. Then, the simulated student’s score simMath5ik is
shown in Equation 5, where tik = tk+tmath3,ik and tmath3,ik is the amount of feedback
the pupils in group k have had when their attainment is measured as Math 3.

simMath5ik = log
(
tϑik
)

(5)

The second assumption is related to the group formation mechanism. There is an
initial number of spots where students can hang out. Every school has a threefold tol-
erance criteria which is adopted by the students to decide whether to stay in a specific
group or to move to the next one. Pupils who belong to the same spot establish a group.
If they are in a group that has, for example, a higher percentage of people of the oppo-
site sex than the school’s tolerance, then they are considered ‘uncomfortable”, and they
leave that group for the next spot. Movement continues until everyone at the school
is “comfortable” with their group. The final number of groups might be smaller than
the number of spots. Taking into account the available data (see Section 3), we de-
fined three tolerance levels: Educational tolerance, that reflects the students’ tolerance
of accepting others with different attainments in Math 3; Gender tolerance indicates
the students’ tolerance for people of the opposite sex; and Social class tolerance, the
pupils’ tolerance for different social class. Tolerance levels range between 0 and 1 and
corresponds to the proportion of similar pupils within each group. Figure 2 shows the
student network at the end of a simulation for school 32. Male and female pupils are
coloured blue and pink respectively; rounded and squared shaped nodes represent low
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and high social class respectively; and previous attainment in Math 3 is labelled on stu-
dents’ icons. In this scenario, education, gender and class tolerances are 0.9, 0.3 and
0.9 respectively. There are 39 students in school 32 and these form themselves into 15
groups.

Fig. 2. Simulated Students Social Network in School # 32

5.3 Model Calibration

We initialised the ABM with the pupils’ performance in Math 3 and we explored the
parameter space given by the three tolerance levels. Our objective was to find a set of
tolerance levels for each school that minimises the differences between the data and the
simulations results. Let dj be such a difference for school j. Then,

dj =

nj∑
i=1

|math5ij − simMath5ij | /2 (6)

where math5i and simMath5i are the score in Math 5 of student i obtained from
the real data and from the simulations respectively. In the example shown in Figure
2, d32 = 2.231, which means that the simulated score in Math 5 differs, on average,
from the data by ±2.231 units. In order to explore the parameter space of the model,
we ran 126,720 simulations. This represents all the possible combinations of the three
tolerance levels (varying among 0.3, 0.5, 0.7 and 0.9) and the number of spots (varying
among 15, 20 and 25) across the 22 schools. In order to have more robust results, we
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ran each setting 30 times and then took the average of dj over all 22 schools as the
aggregate outcome.

6 Comparing MLM and ABM

Table 3 shows the results for the parameter setting that minimises dj . We present the
average distance (in the same units as the real data) between the predicted scores and
the real scores in Math 5 for both the multilevel model (‘MLM (dj)’) and the simu-
lation (‘ABM (dj)’) respectively. The results are grouped according to the 22 schools
we included in our study. As well, in this table we show the number of groups (‘Final
Groups’) in which all the pupils were happy with their group membership, given the
values in the ‘Tolerance Levels’ for education, gender and social class (the last three
columns of Table 3). Recall that these three last variables were set as simulation param-
eters, and the specific values presented in the table correspond to those combinations
at the school level that minimise the distance between the simulated and the real data
scores in Math 5.

Table 3. Calibration Results

Tolerance Levels

School Num. MLM ABM Final Edu. Gender Soc.
Id Pupils (dj) (dj) Groups Class

1 25 2.88 3.36 13 90% 50% 30%
4 24 2.26 3.12 12 90% 90% 50%
5 25 1.53 2.26 12 90% 70% 90%
8 26 1.41 2.82 12 90% 70% 30%
9 21 1.67 2.91 12 90% 70% 30%

11 22 2.21 3.10 12 90% 30% 70%
12 19 3.03 3.55 12 90% 50% 30%
20 28 1.60 2.62 12 90% 30% 70%
22 18 2.18 3.63 10 90% 30% 70%
23 21 1.43 3.19 12 90% 90% 50%
25 20 2.60 3.50 11 90% 30% 50%
26 19 1.85 2.79 12 90% 70% 50%
29 20 2.30 3.36 12 90% 70% 30%
30 35 1.03 2.56 14 70% 90% 70%
31 22 2.30 3.60 12 90% 70% 50%
32 39 1.72 2.71 15 90% 30% 90%
33 25 1.22 3.04 12 90% 30% 90%
35 27 1.01 2.44 13 90% 70% 30%
41 38 2.46 3.25 16 90% 30% 70%
45 30 1.58 2.62 12 90% 30% 70%
46 62 2.24 2.96 15 90% 90% 70%
47 22 1.85 3.61 12 90% 50% 90%
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Firstly, by comparing the average between the two models, we see that the predic-
tions of the multilevel model outperform the predictions of the agent-based model, so
the former is more accurate. However, the prediction errors of the ABM are not high; in
fact, the overall distance equals 3.04 on a scale of 40 points. Thus, the ABM, despite its
simplicity, offers a reasonable fit to the data. Secondly, the simulation results suggest a
high educational tolerance, since most of values equal 90% (except from school 30, in
which the tolerance level equals 70%). On the other hand, the tolerance levels of social
class and gender vary across the schools. Therefore, the group formation mechanism in
our simulation seems to be ruled by the variables social class and gender, and previous
attainment in maths does not constitute a variable that discriminates between groups.
Thirdly, the hypothesised mechanism that bring about the differences in school effec-
tiveness, based on social interactions among pupils and group formation according to
tolerance levels defined at the school level, seems to be justified. The simulation results
indicate that the mechanism of group formation helps to minimise the distance between
the predicted and the real scores, allowing a better fit with the data. For instance, when
we compare the number of groups with the number of pupils, we can see that in general
we have fewer groups than students in each school (for a graphical example, see Fig-
ure 2). If the numbers of groups made no difference in the simulation, then the number
of groups and the number of pupils would tend to be similar (at least in those schools
with 25 or fewer pupils, which is the maximum number of groups the ABM calibration
allowed). This is clearly not the case. Therefore, the pupils’ social networks seem to be
important to explain the differences in effectiveness among schools.

7 Concluding Remarks

In this paper we have presented and compared the results of two models to address
differential school effectiveness. The first one is a MLM, where the hierarchical nature
of educational processes is considered. The second one is an ABM, where the social
mechanisms that might generate school effects in pupil attainments are formalised and
explored. We found that the MLM provides more accurate predictions compared to the
ABM, However, the differences in the prediction are small and range between 1 and 2
units of marks. The next research step is to reduce this prediction gap between the two
models by further refining the ABM. There are important differences between the two
modelling techniques. Whereas MLM is data driven, ABM is both data driven and the-
ory based, so the latter allows us to formalise and falsify in silico plausible mechanisms
that might bring about the observed differences in performance across schools. Finally,
whereas MLM takes few seconds, the proposed ABM took several hours for coding,
calibration and analyses.
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