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Introduction

Small area data in the UK

Administrative geography in UK includes
I Census Output Area (COA; ∼300 people)
I Electoral wards (∼ 500 to 2000 people)
I Local authority districts (10‘s of thousands)

Many administrative data sets contain information on social,
economic and health indicators of the population.

I Census: population and socio-economic indicators
I Counts of births, deaths, cancer registrations, hospital admissions
. . .

I Counts of burglaries, car thefts . . .
I Average income estimates from purposely conducted surveys.
I etc.

These data are often geo-referenced by small area
Provide rich source of data for empirical social science research.
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Introduction

Main issue in the analysis of small area data

“Small” does not necessarily refer to the geographical size of an
area.
→ A district in the UK, typically of several hundred thousand

population, can be a “small area” if we are interested in some rare
outcome (cancer, homicide).

For our purposes, an area is considered to be small if
1 outcome of interest is “rare”, e.g., number of cancer deaths,

burglaries and benefit claimants or
2 the sample size is much smaller than the total population in the

area, e.g., typically a survey only covers 1% of the population.

Any direct measure based on the sparse data becomes
unreliable

→ need more sophisticated statistical analysis
techniques.
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Introduction

Bayesian hierarchical (multilevel) models

Bayesian hierarchical models (BHM) offer a natural framework to
combine information and hence to strengthen estimation.
The sparsity issue in geo-referenced data can be addressed by
“smoothing” over space or time or both.
Idea is to “borrow information” from neighbouring areas or time
periods to produce better (more stable, less noisy) estimates in
each area.
Modelling spatial or temporal structure achieved by appropriate
choice of random effects distribution.
Estimation and inference from these models are more easily
achieved using a Bayesian model formulation + simulation-based
estimation methods (e.g., MCMC).
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Introduction

Burglary rates in Cambridgeshire

Unsmoothed map Smoothed by Bayesian models
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Introduction

Motivating examples

1 Small area estimation of income using Bayesian spatial models

I Structure: geocoded survey data
I Objective: to provide estimates of average income at some

geographical level (e.g., MSOA)
I BHM with spatially structured random effects shown to improve

estimates for small areas with/without survey samples.

2 Evaluation of the Cambridgeshire Police “No Cold Calling”
scheme

I Structure: time series data for a set of small areas
I Objective: to evaluate impact of policy to reduce burglary rates in

some areas
I BHM smooths temporal trends and departures of trends in the

NCC-targeted areas from the control trend can be better
estimated using a hierarchical modelling structure.
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Bayesian spatial models for income estimation
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Bayesian spatial models for income estimation

Income: Background

National statistical offices are often required to provide statistical
information about characteristics of the population, e.g., mean
income, at several administrative or small area levels.

Although reliable at regional or national level, survey data are
often sparse when disaggregated to lower geographical areas.

I Due to sampling design, some small areas may not even have
survey samples.

Questions of interest are:
1 to provide reliable small area estimates for both the in-sample

and off-sample areas;
2 to rank/classify areas to help inform policy making.
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Bayesian spatial models for income estimation

Income: Survey data at small area level

The empirical mean of the survey sample, ˆ̄yi =
∑ni

j=1 yij/ni , as an
estimate of the mean income for small area i would be highly variable.
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Bayesian spatial models for income estimation

Income: BHM with spatial random effects

Let
yij be the income of household j in area i that was included in the
survey;
xij be a vector of household level covariates

The following model is applied

yij ∼ N(µij , σ
2)

µij = α + xij · β + ui + vi

where
α and β are the regression coefficients and
σ2 is the sampling variability.
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Bayesian spatial models for income estimation

Income: Spatial smoothing
yij ∼ N(µij , σ

2)

µij = α + xij · β + ui + vi

ui and vi are modelled as random effects.
vi are modelled as unstructured random effects, vi ∼ N(0, σ2

v ).

The (intrinsic) Conditional AutoRegressive (CAR) model is
assigned to u (≡ u1:N) to allow for spatial dependence:

ui |u−i ∼ N(mi , si)

mi =
∑

k∈NBi

uk/ni

si = s/ni

NBi the set of neighbours for area i

ni is number of neighbours

mi = average of uk in
neighbouring areas

si is random effect
variance weighted by
no. of neighbours

The SAE for area i is given by µ̂i = α̂ + β̂ · Xi + ûi + v̂i .
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Bayesian spatial models for income estimation

Income: Benefits of spatial BHM

Spatial structure allows us to borrow information from
neighbouring areas when estimating the spatially-correlated
random effects, which has been shown to improve SAE, in
particular, for areas without survey samples.

Being Bayesian, probability
statements about the
parameters can be easily
made, i.e.,

P(bL < Avg. Income < bU)
240 250 260 270 280 290 300

Avg. household income

Ranking and classification of areas, a common problem faced by
statistical bureaus, can be produced easily. Uncertainty of the
ranks, a crucial information to present, is also readily available.
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Bayesian spatial models for income estimation

Income: Average equivalised income per household in
Sweden

Data
I Using the LOUISE Population Register in Sweden, 100 “mock”

surveys were constructed.
I 284 municipalities in Sweden in 1992.
I Sample size: 0.1% of the total population (a total sample size of

3358 households) with some municipalities without survey data
I True area values are known (so can be used for model evaluation)
I Covariates: number of persons in HH, gender, age, education of

the head of the HH.

Models compared
I With/without the random effects ui + vi .
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Bayesian spatial models for income estimation

Income: Improved SAE for in/off-sample areas

- MARB: Mean Absolute Relative Bias, measuring the bias of the estimator.
- MRRMSE: Mean Relative Root Mean Square Error, measuring the variability of the

estimator.

1 Model-based methods can (a) reduce variability of SAE and (b) provide
SAE for off-sample areas.

2 For both the in-/off-sample areas, the BHM with both spatially
structured and unstructured random effects produces SAEs that are
less biased and less variable than those from models without any
random effects.
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Bayesian spatial models for income estimation

Income: Ranking and classification

Ranking of areas can be
produced by using point
estimates (from either
Bayesian or frequentist
approach)
but care must be taken
in interpreting the results
due to the considerable
uncertainty in the ranks.
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Bayesian spatial models for income estimation

Income: Ranking and classification
We suggest to rank areas using the posterior probability

I e.g., rank the posterior prob. of household income less than £200.
Broadly discriminate the rich from the poor where the latter may
require appropriate assistance.
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Bayesian spatial models for income estimation

Income: Family Resources Survey (FRS) application
(collaboration with ONS)

Survey description
I The FRS covers England and Wales.
I The main interest is to provide estimates of average income per

household at the Middle Super Output Area (MSOA) level.
I The primary sampling unit is at the postcode sector (PCS) level.

Main challenge
I Roughly a third of a total 8569 PCS were sampled

→ the in-sample areas are sparsely distributed spatially, leading to
difficulty in constructing a spatial model at the PCS level.

G. Li et al. (Imperial College London) BHM for SAE SRA2011 19 / 37



Bayesian spatial models for income estimation

Income: Distribution of areas with survey samples
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Bayesian spatial models for income estimation

Income: a possible solution
Spatial models can be constructed at a higher geographical
level, e.g., Local Authority District level (defined by the black boundary).
All PCS’s within a district assumed to share same random effect.
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BHM for policy assessment: Evaluating the NCC scheme
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BHM for policy assessment: Evaluating the NCC scheme

NCC: Background

The “No Cold Calling” (NCC) project aims to reduce the impacts
of distraction burglary and rogue trading in terms of (i) the
number of incidents and (ii) the public’s fear of crime.
The scheme was initiated by the Cambridgeshire and
Peterborough Distraction Burglary and Rogue Trader Task Force
in 2005.
This project was first implemented in selected areas (much
smaller than a typical Census Output Area) within Peterborough.
An evaluation of the NCC scheme by the Cambridgeshire Police
concluded that residents in the NCC areas generally expressed
increased confidence in dealing with unknown visitors.
Our aim: to evaluate whether the NCC scheme had a
measurable impact on burglary rate in the targeted areas.
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BHM for policy assessment: Evaluating the NCC scheme

NCC: trend patterns from raw data
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Before the NCC scheme (2001-2004), the overall burglary rates were similar
between the NCC group and other areas in Peterborough (Rate ratio=1.06 with
p-value=0.56).
After the NCC scheme (2005-2008), the NCC group showed a reduction in the
overall burglary rate (RR=0.85 and p-value=0.19).
Raw data too sparse to draw firm conclusions about impact of scheme.
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BHM for policy assessment: Evaluating the NCC scheme

NCC: Strategy for evaluation

1 Comparing burglary rates before and after the implementation of
the NCC scheme;

I Difference between the two time periods is indicative of the
influence of the policy.

2 Comparison is done after adjusting for systematic changes in
burglary rates in other (non NCC) areas;
→ The use of control areas helps to differentiate how much of the

change may be due to the policy impact and how much of the
change may be due to other external factors.

3 Deal with sparsity of data (i.e., small number of burglary events)
by temporal smoothing and hierarchical structure across areas.
→ separate signal from noise
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BHM for policy assessment: Evaluating the NCC scheme

NCC: Constructing the control group

To form the control group, areas are selected on the basis of
having similar local characteristics (e.g., burglary rates or
deprivation scores) to those in the NCC-targeted group.
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BHM for policy assessment: Evaluating the NCC scheme

NCC: Model for the control areas

The following model is fitted to data of the control group to construct
the control trend pattern.

yit ∼ Poisson(ni · θit )

log(θit ) = α + ui + γt + εit

γ1:T ∼ RW1(W, σ2
γ) (time effect)

ui ∼ N(0, σ2
u) (place effect)

εit ∼ N(0, σ2
ε ) (overdispersion)
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Vague priors are assigned to α and other variance parameters.
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BHM for policy assessment: Evaluating the NCC scheme

NCC: Model for the NCC areas

y∗it ∼ Poisson(n∗i · θ∗it )
log(θ∗it ) = α∗ + u∗i + γt + ε∗it

+ I(t − t0,i) · f (t ,bi)

γ1:T ∼ RW1(W, σ2
γ)

u∗i ∼ N(0, σ2
u)

ε∗it ∼ N(0, σ2
ε )

f (t ,bi) = bi · (t − t0,i + 1)

bi ∼ N(µb, σ
2
b)
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BHM for policy assessment: Evaluating the NCC scheme
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BHM for policy assessment: Evaluating the NCC scheme

NCC: Impact functions
We consider various functional forms for the impact function.

2001 2002 2003 2004 2005 2006 2007 2008

−
30

−
20

−
10

0

Year

%
 c

ha
ng

e 
in

 r
at

e 
re

la
tiv

e 
to

 c
on

tr
ol

 g
ro

up

No change
Step change
Linear function of time
Generalized function

pre−policy post−policy

G. Li et al. (Imperial College London) BHM for SAE SRA2011 31 / 37



BHM for policy assessment: Evaluating the NCC scheme

NCC: Local and global impacts
This figure shows the estimated slope (quantification of NCC impact)
for each NCC area (bi ) and their mean (µb) with 95% credible
intervals.
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BHM for policy assessment: Evaluating the NCC scheme

NCC: Interpretation
NCC scheme led to an overall success
→ an overall 16% (95% CI: -2%, 34%) reduction per year in burglary

rate was estimated.

This suggests a positive impact of the NCC policy which had the
effect of “stabilizing” the burglary rate in the targeted areas while
overall burglary rates were going up.
This resulting impact function describes a gradual and persistent
change and the trend of the NCC group moved further away from
the control group over time.
There exists different impacts between targeted-COAs, perhaps
due to local difference in implementing the scheme.
Estimates of burglary rates in each area borrow strength from
data in other areas and time points using the hierarchical
structure and hence both the local and the global impacts can be
better estimated.

G. Li et al. (Imperial College London) BHM for SAE SRA2011 33 / 37



Conclusion

Outline

1 Introduction

2 Bayesian spatial models for income estimation

3 BHM for policy assessment: Evaluating the NCC scheme

4 Conclusion

G. Li et al. (Imperial College London) BHM for SAE SRA2011 34 / 37



Conclusion

Summary
In this talk, we have demonstrated some practical uses of
Bayesian hierarchical models in dealing with complex data
structures in small area data (spatial and temporal).
BHM offers a natural framework for combining information which
helps to strengthen inference/estimations.
Hierarchical models with spatially/temporally structured random
effects can be more reliably estimated under the Bayesian
framework.
As all variables are treated as random variables, probability
statements can readily be obtained in the Bayesian framework.
Estimation of BHM requires computationally intensive simulation
methods (MCMC)

I Implemented in free WinBUGS and GeoBUGS software:
www.mrc-bsu.cam.ac.uk/bugs

I Free software INLA (Rue et al, 2008) implements fast
approximation: www.r-inla.org
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