
Evaluating Neighbourhood Policing using

Bayesian Hierarchical Models: No Cold Calling in

Peterborough, England

Guangquan Li ∗,1, Robert Haining 2, Sylvia Richardson1,3, Nicky Best1,3

1 Department of Epidemiology and Biostatistics, Imperial College, London, UK

2 Department of Geography, University of Cambridge, UK

3 MRC-HPA Centre for Environment and Health, Imperial College, London, UK

∗ To whom correspondence should be addressed: guang.li@imperial.ac.uk

Word count: 5108

1



Abstract

As part of a wider Neighbourhood Policing strategy, Cambridgeshire

Constabulary, in common with other Police Forces in the UK, instituted

“No Cold Calling” (NCC) zones to reduce cold calling (unsolicited visits to

sell products or services), which is often associated with rogue trading and

distraction burglary. This paper evaluates the NCC targeted areas chosen

in 2005-6 and reports whether they experienced a measurable impact on

their burglary rates in the period up to 2008. Time series data for burglary

at the Census Output Area level is analysed using a Bayesian hierarchical

modelling approach, addressing issues often encountered in small area

quantitative policy evaluation. Results reveal a positive NCC impact on

stabilising burglary rates in the targeted areas.
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Introduction

Policy evaluation is often performed by comparing event occurrence before

and after policy implementation. Differences between the two time periods are

indicative of the influence of the policy. However, apart from genuine policy im-

pacts, these changes can be a consequence of changes in other external factors.

It is therefore recommended to employ a control group so that time series data

from the exposed group(s) can be compared against what would be expected

based on time series data from non-exposed but demographically similar groups.

Controlling for systematic changes over time helps to differentiate how much of

the change may be due to the policy impact and how much of the change may be

due to other external factors. Often termed the interrupted time-series design

(Campbell et al. 1963), this approach has an abundance of evaluation appli-

cations, ranging from health care interventions (Morgan et al. 2007; Studnicki

et al. 1997), school reform (Thum and Bhattacharya 2001) to policing strategy

assessments (MacDonald et al. 2010).

In relation to crime, several aspects of the interrupted time-series approach

have been adopted by UK Government agencies as well as the research com-

munity. A recent Home Office study revealed an overall positive impact from

the National Reassurance Policing program on crime rates, the public’s per-

ception of crime and anti-social behaviours by comparing results from six trial

sites against six control sites (Tuffin et al. 2006). Skogan et al. (2008) evalu-

ated the CeaseFire program in Chicago by contrasting changes in the selected

areas after the introduction of the program with trends in matched comparison

areas. To avoid overestimating any impact, MacDonald et al. (2010) used a

regression approach to adjust for an overall downward trend when assessing the

effect of forming business improvement districts on violent crimes. However,

since the adjustment was estimated from the business improvement districts,
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the resulting evaluation of the program could have been conservative. In all the

above studies, including the one presented in this paper, there is no random

assignment of areas to either the control or the exposure group. Conclusions

regarding policy impacts should be verified against different definitions of the

control group.

Another issue often faced when evaluating neighbourhood scale programs is

data sparsity. For example, the number of burglary cases observed during a

year at some geographical level can be too small to provide a reliable trend esti-

mate. Effect of the policy could potentially be masked by the excessive noise in

the sparse data. Multilevel models (or equivalently termed hierarchical models

or random effect models) provide a natural framework to combine information

from multiple areas and periods and hence to strengthen the estimation of im-

pact. Here, we adopt the Bayesian model formulation for parameter estimation

and making inference. Parameter summaries such as posterior means, uncer-

tainty intervals and posterior probabilities (e.g., what is the probability that the

overall burglary rate in the exposed group is lower than that of the non-exposed

group) can be readily obtained as all parameters are considered to be random

variables with associated posterior distributions. Both Iversen (1984) and Gill

(2007) provide some nice introductory material to Bayesian statistical inference

in the social science context. For readers who are interested in Bayesian hierar-

chical/multilevel models (BHM), a good introduction can be found in Part II of

Gelman et al. (2004) while Gelman and Hill (2007) gives an excellent overview

of BHM in social research.

A further issue related to data sparsity often arises because targeted areas

often tend to be small relative to the geographical scale at which much of the

data necessary for the evaluation are reported. This data complication should be

recognised in constructing a model, which can help to enrich the interpretations.
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Models utilised in this paper are close in spirit to those of Thum and Bhat-

tacharya (2001) and MacDonald et al. (2010). Typically, a BHM evaluates the

area-specific policy impacts hierarchically through a random effects distribution,

e.g., θi ∼ N(µθ, σ
2), where θi quantifies the local impact for area i and µθ repre-

sents the overall impact. All local data are combined to estimate aspects (e.g.,

mean and variance) of the global distribution, which in turn provides estimates

for the local impacts. Under this structure, these local impacts are modelled as

correlated, as opposed to independent. Estimation of impact in one area can

“borrow” information from data in other areas and this information borrowing

can lead to a better estimate of the impact.

The objective of this paper is to present a generic Bayesian framework for

evaluating policies targeted at the small area or neighbourhood scale, paying

close attention to the issues described above. We tailor the approach in or-

der to carry out a statistically rigorous assessment of the “No Cold Calling”

(NCC) scheme in Peterborough which was initiated by the Cambridgeshire and

Peterborough Distraction Burglary and Rogue Trader Task Force in 2005.

“Cold calling” is defined as a visit, or in the first place a telephone call that

may be followed by a visit, by a trader (or someone linked to a trader whether

or not they supply goods or services) and which takes place without the con-

sumer expressly requesting the initial contact. In 2002 the Trading Standards

Institute carried out a national survey of almost 9000 households1. Over 60%

of consumers said they had received a cold call in the preceding 3 months and

25% reported a bad experience in the past two years. Over 95% of respon-

dents said they did not want doorstep callers. Incidents linked to cold calling

can be devastating with older people suffering in particular (Cambridgeshire-

Constabulary 2008).

1The survey report can be downloaded from http://www.tradingstandards.gov.uk/policy
/researchandreports.cfm (last accessed on May 6, 2011)
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Potential areas to be targeted by the scheme were identified by Police and

Trading Standards staff and Neighbourhood Watch co-ordinators. Areas con-

sisting of between 20 and 40 properties in close proximity occupied by older

or vulnerable people were identified in the first instance. Those areas with the

highest reported incidents of distraction burglary and rogue trading were se-

lected for inclusion in the scheme. The project’s aim was to reduce the impacts

of distraction burglary and rogue trading in terms of (i) the number of incidents

and (ii) the public’s fear of crime. The project in Peterborough was first imple-

mented in selected areas during 2005 and extended to more areas in 2006. More

NCC areas were defined in subsequent years.

In addition to setting up street signage and door stickers to discourage cold

calling, every resident was visited in the targeted areas and given an information

pack containing literature advising how to avoid becoming a victim and the

steps to take when answering the door. The police also participated in informal

follow-up meetings.

A “dip” sample interview-based evaluation of the NCC scheme by the Cam-

bridgeshire Police reported high levels of satisfaction amongst residents in the

NCC-targeted areas who generally expressed increased confidence in dealing

with cold callers (Cambridgeshire-Constabulary 2008). This report recommended

extending the scheme to other vulnerable locations dependent on securing fur-

ther funding. However, to date, there has been no assessment of the scheme

based on offence data so this is the question we address in this paper.

The paper is structured as follows. The following section describes data from

the recorded crime database obtained from the Cambridgeshire Constabulary

used in the evaluation. The section entitled “Evaluation framework” outlines

various criteria used to construct the control group and discusses the two sta-

tistical models involved, one for estimating the control trend pattern and one
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for quantifying the policy impact. Two different ways to combine information

across areas are also discussed in that section. Results are reported in the sub-

sequent section and some concluding remarks are made in the last section.

The Data

Rogue trading is an under reported crime and the number of cases is small;

distraction burglary events (Home Office classification Code 28, Sub-Code 10)

are also very few in number. As a consequence, analysis here is based on all

reported burglary in a dwelling events including aggravated burglary (Code 28

with Sub-Codes 0 and 10 and Code 29). We employ this as a surrogate measure

for rogue trading and distraction burglary, two household-related acquisitive

offences. The data were extracted from the 2001-2008 recorded crime database

provided by the Cambridgeshire Constabulary.

During this period, there were in total 9388 burglary in a dwelling inci-

dences recorded in Peterborough, which has a population of approximately

160,000. The annual burglary trend in Peterborough showed an initial increase

in 2001/2002, followed by a drop in 2003, levelling off in 2005/2006, after which

it increased again reaching close to 2002 levels by 2008. Some of the difference

pre and post 2002 may be associated with the implementation of the National

Crime Recording Standard (Berman 2008). We used the earliest time at which

the incident might have taken place to define the burglary time. As the cases

were then aggregated to the annual level, this uncertainty in the burglary time

is unlikely to affect our policy assessment.

Table 1 summarises data on the NCC scheme implemented in 2005 and 2006

in Peterborough. A total of eleven areas were targeted, eight in 2005 and a

further three in 2006. These targeted areas are much smaller than the corre-

sponding Census Output Area (COA) that they are nested within. At the COA
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level, the median number of burglary cases per year was 2 over 2001-2008, with

the 5th and 95th percentiles being 0 and 8, respectively. So, the burglary cases

were aggregated to the COA level to avoid further problems associated with data

sparsity and due to data availability for 2001-2003, where the offences records

were only geo-referenced at the COA level. Note that there are two targeted ar-

eas, Boxgrove Close and Woad Court, that nest within the same COA, resulting

in only 10 unique NCC-COAs. As evident in Figure 1, even at the COA level

there is still substantial variability in annual burglary rates. Further aggregat-

ing the data for these 10 NCC-COAs into a single time series yields a clearer

picture. The burglary rate for the NCC group remained lower during 2006-2008

than the overall burglary rates in Peterborough which were going up (Figure 1),

a first indication of a positive impact from NCC. A simple Poisson test for com-

paring two rates showed that the overall burglary rates were similar between the

NCC group and other non-NCC areas in Peterborough before the NCC scheme

(2001-2004) with a rate ratio of 1.06 (p-value=0.56). After the introduction of

the NCC scheme, the NCC group showed a non-significant reduction over the

period 2005 to 2008 compared to the overall burglary rate from other non-NCC

areas in Peterborough (rate ratio=0.85 and p-value=0.19). However, raw data

may be too sparse to draw firm conclusions about the scheme’s impact using

simple significance tests such as this.

(Table 1 and Figure 1 here)

In what follows, our analysis is concerned with ways of strengthening infer-

ence on the differences between NCC area trends (aggregated or individually)

and overall trends (for different sets of control, non-NCC, areas) and hence to

reliably provide statistical evidence regarding the scheme’s impact.

Evaluation framework
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Constructing the control group

In this study, control groups are employed to set the reference trend for the

before-after comparison. We used the Lower Super Output Area (LSOA) scale,

each comprising several COAs, as the basic areal unit for the control group in

order to obtain a reliable control trend pattern. To form the control group,

LSOAs are selected on the basis of having similar local characteristics such as

burglary rates or deprivation score to those areas in the NCC-targeted group.

Six different control criteria have been considered, as tabulated in Table 2.

While Criterion 1 includes all the 88 LSOAs in Peterborough, LSOAs under

Criteria 2-4 are only selected if they are in the same burglary rate category as the

NCC group prior to the NCC scheme. Criterion 5 uses spatial proximity to select

controls whereas Criterion 6 selects LSOAs based on the LSOA-level multiple

deprivation scores in 2004, obtained from the neighbourhood statistics website.

Specifically, LSOAs in Criterion 6 are chosen to have multiple deprivation scores

between 20 and 40, a range that 7 out of 10 NCC-exposed LSOAs fell within.

(Table 2 here)

The purpose of constructing these different control groups is to examine the

robustness of our conclusions. All 88 LSOAs in Peterborough are eligible to be

selected but in the case of those containing NCC-targeted COAs, we subtracted

both burglary counts and dwelling numbers associated with the NCC-COAs.

The Models

The evaluation framework contains two models, one for constructing the refer-

ence trend pattern from the control group and one for comparing the before-after

burglary rates in the policy areas with an adjustment for the reference trend.

For the second model, we explore two different ways to synthesise information

across areas, one by empirical grouping and the other using a fully model-based
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approach. One advantage of placing this analysis in the Bayesian framework is

that uncertainty in the reference trend adjustments can be fully acknowledged

when quantifying the NCC impact, which is discussed in more detail in both

the Discussion section and Appendix C.

The following subsections summarise each model. Full specifications are

given in Appendix A.

A model for the control group

To construct the reference temporal profile, a Poisson regression model is fit-

ted to the count data in the control group (McCullagh and Nelder 1989). The

number of burglary cases recorded in area i of year t, yit (i = 1, . . . , N and

t = 1, . . . , 8), is assumed to be a Poisson random variable with mean λit = ni ·θit

where ni denotes the number of dwellings in area i. On the log scale, the bur-

glary rate θit is modelled as a linear combination of the place effect (ui), the

time effect (γt) and εit, which accounts for overdispersion. All these three terms

are modelled as random effects. The place effects, ui ∼ N(α, σ2
u), are normally

distributed around a grand mean α, and account for the differences in the total

burglary rates from area to area. For the time effect, we acknowledge the tem-

poral dependence structure in burglary counts by assigning a Gaussian random

walk model of order 1 to γ1:8, which is analogous to an autoregressive model.

When the control group is small, i.e., the trend pattern is to be estimated from

only a few areas, this temporal smoothing model can help to provide reliable

trend estimates. Overdispersion is often encountered in count data analyses,

whereby the observed variability exceeds that which can be explained by the

Poisson model. This extra variability, captured by εit ∼ N(0, σ2
ε ), might be

associated with unobserved risk factors and/or the non-independence of bur-

glaries up to the scale of the areal unit - associated with repeat victimization
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for example (Johnson and Bowers 2004; Tseloni and Pease 2004). The main

aim of this model is to provide an estimate of γ1:8, the control trend pattern.

Models for the NCC data

Two approaches are considered in order to combine information for estimating

the NCC impact. First, data from the ten NCC-targeted COAs were aggregated

to form one single time series, from which the overall impact can be examined.

Since there were only three NCC areas in 2006, we assume for this second NCC

group that their schemes were also implemented in 2005. This assumption is

likely to dilute the impact of NCC but is unavoidable if pooling all the areas to-

gether. In the second approach we will see how both global and local evaluations

can be achieved simultaneously via Bayesian hierarchical models. Furthermore,

we will incorporate the coverage rates, the proportion of properties in a COA

visited by the Police, to explain heterogeneity in the local impacts. Including

coverage rates is a way of recognising the fact that the NCC areas are much

smaller than COAs and that if the policy effect increases with the size of the

coverage rate this provides further evidence of an NCC effect. Importantly, the

estimated trend pattern γ1:8 from the control group model will be incorporated

as an adjustment in both approaches.

In the description that follows and in the appendices, parameters associated

with the NCC data are denoted with a superscript ∗.

A model for the aggregated NCC group

Similar to that for the control group, a Poisson model is fitted to the single

time series data. The decomposition of the burglary rate, θ∗t , comprises an in-

tercept (α∗), the estimated control trend from the control group model (γt),

the overdispersion parameter (ε∗t ) and, crucially, an impact function f(t,Ω).
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Explicitly, we have log(θ∗t ) = α∗ + γt + ε∗t + It≥5 · f(t,Ω) where It≥5 denotes

the indicator function so that the impact function only comes into play when

t ≥ 5, that is after NCC started. First introduced in Box and Tiao (1975), the

impact function, f(t,Ω), assesses the nature (through examining various forms

of f) and magnitude (through estimating the associated parameters Ω) of the

departure of the NCC trend from the control trend. Specification of this impact

function is discussed in the following section.

Impact functions

Various forms have been considered, summarised in Table 3. In the step change

function, δ quantifies the level shift in (log) burglary rates after the NCC imple-

mentation. A negative estimate for δ is indicative of a positive policy impact.

The linear function of time allows for a gradual change and η < 0 suggests a pos-

itive policy impact. Both the step and linear functions are special cases of the

generalised function, which allows for non-linearity of change on the log scale.

In the generalised function, ξ, constrained to be between 0 and 1, controls the

degree of non-linearity in the resulting function while a negative ω suggests a

positive impact in this application. Further discussion of these three functional

forms can be found in Appendix B.

(Table 3 here)

It should be noted that since the before-after comparison is carried out after

adjusting for the control trend pattern, these impact functions measure a change

in burglary rates relative to the control trend. So, for example, an estimated re-

duction may not correspond to an actual reduction of burglary cases but rather

a lower burglary rate than what would be expected from other non-targetted

(non-policy) comparison areas.
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Models for the COA-level NCC groups/areas

Through data aggregation, random variability is reduced and hence statistical

inference is strengthened. However, information about local effects is lost. Here

we extend the model for the aggregated NCC group by allowing parameters

in the impact function to be area-specific. These area-specific parameters are

treated as random effects and modelled hierarchically. Without aggregation,

this model deals with the NCC data at the COA-level. So, for example, for the

linear impact function model the slope parameter becomes ηi where i labels the

ith NCC-COA and ηi ∼ N(µη, σ
2
η). Here ηi quantifies the local impact while µη

represents the overall effect of NCC.

Analysing the data at the COA level has two advantages in addition to the

global-local evaluation. First, we can handle different NCC starting years by

using area-specific indicators. Second, to explain the differential local impacts

we can further model the area-specific impact parameters by, for example, the

COA-specific coverage rates (see Appendix A.3 for details).

Results

Grouped analysis

The overall impact of the NCC scheme is measured by the parameters in the

impact functions. Under various criteria for constructing the control group,

Table 4 summarises the parameter estimates from the three impact functions.

All three impact functions consistently reveal a positive effect associated with

the NCC-targeted areas. The burglary rates of the NCC group during the post-

NCC period were lower than expected from the control trends. While overall

burglary rates were going up, the NCC policy had the effect of “stabilising” the

rates in the targeted group, as previously observed in Figure 1. The negative

slope estimate for the linear function suggests that the trend for the NCC group
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moved further away from the trend for the control group over time, implying a

persistent and gradual shift. Although the conventionally-defined 95% credible

intervals (CI) for both δ and η do not quite exclude zero, the revealed positive

impact is robust against different comparison groups (Table 4).

(Table 4 here)

For the generalised function, the posterior means of ω are all negative, lead-

ing to a downward pattern. However, with only 4 data points (2005-2008), the

rate parameter ξ was poorly estimated with the 95% CI covering virtually the

whole constrained interval (0, 1). Additional post-scheme observations could

help improve the estimate of this rate parameter.

(Figure 2 here)

Compared to the overall trend from all LSOAs in Peterborough (Control Cri-

terion 1), Figure 2 illustrates the estimated relative reduction in the burglary

rate after the implementation of NCC. The solid line represents the posterior

mean and the grey area shows the 95% uncertainty region. The slight curva-

ture which appears in the linear function is a result of the exponential back-

transformation (the model is linear on the log rate scale). The large uncertainty

of ξ led to a larger portion of the grey area lying above 0 for the generalised

function, compared to that for the linear function. Comparisons with other

definitions of control areas led to similar reduction patterns (results available

from the authors on request).

The deviance information criterion (DIC, Spiegelhalter et al. 2002) is used to

compare the three impact functions together with the one with no change. DIC

is a Bayesian analogue of the Akaike information criterion (AIC) and a smaller

DIC value is indicative of a more parsimonious model. The model with the

linear impact function yields the smallest DIC value (DIC=11.54) when com-
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pared to the model with no change (DIC=15.58), the model with step change

(DIC=15.50) and the model with the generalised function (DIC=13.34).

COA-level analysis

Instead of forming one aggregated NCC unit, a Bayesian hierarchical model is

utilised to allow for assessment of local impacts. Based on results from the

grouped analysis and for ease of interpretation, the linear function is used as

the impact function.

Using all LSOAs in Peterborough as controls, the overall mean of the local

slopes, namely µη, is estimated to be -0.17 (with 95% CI: -0.40, 0.03). This

figure translates to a 15% (with 95% CI: -3%, 33%) reduction in burglary rate

in NCC areas relative to control areas in the first year and 27% (with 95% CI:

-5%, 55%) and 37% (with 95% CI: -8%, 70%) of reduction in the second and

third years, respectively1. Figure 3 illustrates both these local and the overall

(bottom of the plot) NCC impacts after the first year of implementation. In a

Bayesian analysis, we can make probability statements about parameters easily

using the corresponding posterior distributions. Here, it is useful to obtain the

posterior probability that the overall mean of the local slopes is less than zero,

P (µη < 0|data), representing the probability of overall success. This posterior

probability is consistently estimated to be 0.92 or higher across the six com-

parison groups, providing strong evidence of an overall success from the NCC

scheme in reducing burglary rates compared to controls. In particular, con-

structing the control group using (non-NCC) areas with similar burglary rates

1For the sake of simplicity, we demonstrate the calculation using the model for the aggre-
gated NCC group. In that model, the burglary rate is effectively modelled as a product of
two terms, θ∗t = exp(A) · exp(B) where A=α∗ + γt + ε∗t and B=It≥5 · η · (t− 4). Here we have
replaced the generic function f by the linear function. The second term exp(B) measures the
change to the annual burglary rates of the NCC group relative to the rates predicted from the
control group, namely exp(A), and hence exp(η) represents the rate of such change (per year).
Therefore, the percentage of reduction/increment t∗ years after the policy was implemented
can be obtained by (exp(η · t∗) − 1) × 100. The associated credible intervals can be readily
obtained from the posterior distributions of the transformed variables.
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(Criteria 2 and 3) and deprivation scores (Criterion 6) leads to marginally big-

ger impacts. Also revealed in Figure 3, there exists different impacts between

targeted-COAs. Four COAs, namely 00JANH0003, 00JANG0025, 00JANT0027

and 00JANQ0023, appear to have benefited most from the scheme, but others

such as 00JANY0010 and 00JANC0016 show little impact with the slope esti-

mates close to 0. These local estimates again are robust across different control

criteria.

(Figures 3 and 4 here)

A simple correlation plot (Figure 4) suggests that some of the variability in

impacts between COAs may be due to the coverage rates. To examine this, a

model was fitted with area coverage as a linear predictor of the COA-specific

slopes (see Appendix A.3). The associated regression coefficient was estimated

to be negative, β1 = −1.05 (with 95% CI: -2.47, 0.13), providing some evidence

that the more properties that were visited, the greater the impact of the NCC

scheme. As predicted by the model, an area with 10% households visited by the

police would have a success probability, i.e., p(ηi < 0|data and coverage = 10%),

of 0.45, which would increase to 0.98 and 0.99 if 30% or 60% of the households

were visited. We return to this interpretation in the final section.

Including a covariate of LSOA-level multiple deprivation score (either with

or without the coverage rate) shows no evidence of an association between the

efficacy of the scheme and local deprivation.

Discussion

Reassurance policing draws to the attention of the police the importance of cre-

ating and responding to an “in-depth understanding of places and their prob-

lems.” (Rix et al. 2009, p. 10). “No Cold Calling” schemes involve targeted
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policing activity to tackle crime and disorder problems that matter in neigh-

bourhoods; they involve the community in identifying priorities; they produce

visible expressions of the police’s engagement (Tuffin et al. 2006). However

their quantitative evaluation is at a geographical scale that presents a challenge

both in terms of data availability and in terms of methodology for evaluating

statistical evidence of impact.

Neighbourhood policing programs in general are best evaluated with a ”local

focus” (Mason 2009) and those evaluations based on quantitative data need to

be able to examine such data rigorously to provide statistical evidence of changes

over time and with reference to well defined control groups.

Crime reduction was not a stated aim of reassurance policing at the outset

(Tuffin et al. 2006). Raising the public’s confidence in the police was a priority

as was raising people’s perception of their safety at home or in the street. The

effect of raising the public’s confidence in the police could even have the effect of

increasing recorded crime. But crime reduction ought to be one of the outcomes

of a successful program. If neighbourhood programs do result in reducing crime

rates then this may go someway to addressing the skepticism of some police

officers with community engagement which has been identified as one of the

pitfalls in the implementation of reassurance policing, though not specifically of

“No Cold Calling” schemes (Rix et al. 2009).

We have presented a model-based approach to evaluate the “No Cold Call-

ing” policy in Peterborough. This policy is shown to have had a positive impact

on stabilising burglary rates in the targeted areas while the general burglary

trend moved upwards. Setting a reference frame for comparison, namely the

control group, led to a sounder conclusion, for otherwise this evaluation would

have reported no change in the burglary rate. Furthermore, results are shown

to be robust against different comparison groups, which strengthen the inter-
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pretation.

Placing the analysis in a Bayesian framework means that uncertainty as-

sociated with the reference trend estimates can be propagated into measuring

the policy’s impact. Typically, a frequentist method would employ a two-stage

approach, where the first stage would involve obtaining point estimates for the

trend pattern from the control group. These estimates then enter the NCC

model as fixed adjustments. Uncertainty about the trend estimates is thus

ignored. In the Bayesian framework, however, all quantities are treated as ran-

dom variables, including the trend adjustments. As outlined in Appendix C, the

trend adjustments are sampled from the corresponding posterior distributions

(at each MCMC iteration). Thus, the uncertainty in the trend adjustments are

fully accounted for in estimating parameters in the impact function, a distinc-

tive advantage of the Bayesian paradigm. Another advantage of the Bayesian

framework is that uncertainty intervals and probability statements can readily

be obtained as all parameters are treated as random variables, associated with

which are posterior distributions. This means that direct quantitative answers

to policy-relevant questions can be obtained - for example, the probability that

the NCC scheme was successful in a particular area.

Results from the BHM showed some degree of heterogeneity in the local

impacts. These variable impacts could be attributable to factors such as that

the NCC scheme might not be implemented uniformly across the targeted areas

and/or different areas may have responded differently to the scheme because of

differences in local characteristics. Although not associated with deprivation,

the level of impact does appear to be strongly associated with the coverage rate.

There are two possible explanations for this coverage effect. The scheme was

not successful (in terms of reducing burglary rates) in certain areas because

too few properties were visited, a genuine “dose level-response” effect. Alter-
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natively, because the COA is the unit of analysis, the NCC impact, even if it

is present and does not depend on the “dose level”, could be masked when the

original NCC area is small relative to the size of the COA within which it is

located. Neither of these explanations for the coverage rate effect undermines

our overall assessment of the policy’s success. However, the possibility that the

first explanation is valid means that any future implementation of this scheme

should pay careful consideration to whether to continue to target many small

areas or instead identify perhaps fewer but rather larger areas. This implies

the need to also consider the trade-offs between scheme coverage on the one

hand and manageability of the targeted areas on the other. There may be other

dangers in adopting too wide coverage. The scheme may owe some of its effect

precisely because relatively small areas are targeted and it is this feature which

discourages would be offenders.

The results presented here cover quite a short period of time following the

implementation of the scheme but nonetheless it is long enough to allow any

changes to be assessed. Longer time series of data, when they become avail-

able, allow further assessments of existing schemes which may provide not only

evidence for the robustness of the findings reported here but also on the longer

term shape of any impact function. Analyses of other schemes in other parts of

Cambridgeshire and Peterborough will also add to the evidence base and will

be the subject of future work.
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Table 2: Construction of 6 different control groups based on similar local char-
acteristics.

Control
criterion

Description No. of LSOAs

1 All LSOAs in Peterborough 88
2 Within 10% of the burglary rate of the NCC

group in 2005
9

3 Within 20% of the burglary rate of the NCC
group in 2005

20

4 Within 30% of the burglary rate of the NCC
group in both 2004 and 2005

7

5 LSOAs containing the NCC-targeted COAs
(but excluding the NCC-targeted COAs)

10

6 LSOAs that had “similar” multiple depriva-
tion scores to those for the NCC LSOAs in
2004

46
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Table 3: Various functional forms for the impact function. The parameters δ,
η, ξ and ω describe the policy impact. t0 indicates the start of policy.

Change Functional form Prob. of success
No impact f(t) = 0 –
Step change f(t, δ) = δ p(δ < 0|data)
Linear function of time f(t, η) = η · (t− t0 + 1) p(η < 0|data)

A generalised function
f(t, ξ, ω) = ξ · f(t− 1) + ω if t ≥ t0 p(ω < 0|data)
f(t) = 0 otherwise.

Table 4: Posterior means and 95% credible intervals of parameters in the three
impact functions fitted to the aggregated NCC data.

Control Step change Linear function Generalised function
criterion δ (after-before) η (slope) ξ (rate) ω

1 -0.15 (-0.60, 0.33) -0.11 (-0.27, 0.04) 0.48 (0.04, 0.96) -0.15 (-0.48, 0.17)
2 -0.22 (-0.75, 0.31) -0.13 (-0.30, 0.04) 0.48 (0.04, 0.96) -0.19 (-0.57, 0.15)
3 -0.18 (-0.70, 0.30) -0.11 (-0.29, 0.05) 0.47 (0.03, 0.96) -0.15 (-0.51, 0.17)
4 -0.20 (-0.66, 0.27) -0.09 (-0.24, 0.07) 0.43 (0.03, 0.95) -0.14 (-0.48, 0.17)
5 -0.14 (-0.73, 0.44) -0.11 (-0.31, 0.10) 0.47 (0.03, 0.96) -0.14 (-0.57, 0.28)
6 -0.21 (-0.64, 0.19) -0.13 (-0.28, 0.01) 0.50 (0.03, 0.97) -0.19 (-0.52, 0.10)
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Figure 1: Temporal burglary profiles of the individual NCC-targeted COAs.
Superimposed are the overall burglary trend from all LSOAs in Peterborough
excluding the NCC areas and the trend from the NCC group, including both
2005 and 2006 NCC COAs.
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Figure 2: Percentage change in burglary rate in the NCC group relative to
control group 1, which consists of all 88 LSOAs in Peterborough. These changes
are estimated from the aggregated NCC data. The solid lines are the posterior
means of the exponentiated impact function with the associated 95% credible
intervals in grey. The horizontal dotted line represents the case where the NCC
scheme had no impact.
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Figure 3: Percentage change in burglary rates in the NCC areas after the first
year of NCC implementation compared to various control groups (a negative
value indicates a relative reduction). These changes are estimated using the
NCC data at the COA-level. The points, where different symbols correspond
to different control groups, represent the posterior means and the horizontal
bars are the 95% CIs. The number next to each area label is the posterior
probability of local success, P (ηi < 0|data) and P (µη < 0|data) (at the bottom)
is the overall success relative to control group 1.
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Figure 4: Initial assessment of the relationship between local impacts (the pos-
terior means of the linear slopes ηi) and coverage rates. The fitted least squares
line is shown.
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A Full specifications of various models

A.1 A model for the control group

Let yit be the number of recorded burglary cases in area i of year t. We then

model these count data using a Poisson model,

yit ∼ Poisson(ni · θit)

log(θit) = ui + γt + εit

ui ∼ N(α, σ2
u)

γ1:8 ∼ RW1(W, σ2
γ)

εit ∼ N(0, σ2
ε )

where ni is the number of dwellings in area i, assumed to be unchanged over

time and θit is the burglary rate. On the log scale, the burglary rate is a linear

combination of three terms. ui and γt represent the place and time effects,

respectively, both modelled as random effects. A Gaussian random walk model

of order 1 (RW1) is assigned to γ1:8. The temporal dependence is imposed

through the weight matrix W of dimension 8×8. The diagonal entries wii = 0

and the off-diagonal entries wht = 1 if |h − t| = 1 and wht = 0 otherwise.

This setting specifies a “neighbouring” structure, where the previous and next

time points are neighbours of the current time point (apart from the first and

last points in the time series where the second and the penultimate time points

are their only neighbours, respectively). So information can be “borrowed” in

estimating these random effects. εit captures the overdispersion.

To complete the model, we assign a vague prior for the overall intercept

α ∼ N(0, 10000) and a weakly informative half Normal prior N(0, 100) bounded

strictly below by 0, as suggested in Gelman (2006), for the random effect stan-
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dard deviations σu, σγ and σε.

A.2 A model for the aggregated NCC data

Denoting y∗t the number of recorded burglary cases in the NCC group in year t

and n∗ the total number of dwellings, we have

y∗t ∼ Poisson(n∗ · θ∗t )

log(θ∗t ) = α∗ + γt + ε∗t + It≥5 · f(t,Ω)

α∗ ∼ N(α, σ2
u)

ε∗t ∼ N(0, σ2
ε )

where the time trend γt and the overdispersion variance σ2
ε are both estimated

from the control group model. The impact function f(t,Ω) is described in Ap-

pendix B. Multiplied with the impact function is an indicator function which

takes 1 if t ≥ 5 (corresponding to 2005) and 0 otherwise. Both the intercept α∗

and the overdispersion random effects ε∗t are assumed to follow the correspond-

ing distributions, namely, for ui and for εit respectively, in the control group

model. The prior for ε∗t reflects the assumption that apart from the exposure to

NCC, both the control areas and the NCC areas are similar in local character-

istics, including factors associated with overdispersion. The assumption on the

intercept minimises the differences in the estimated α∗ between different impact

functions.

A.3 Models for the COA-level NCC groups/areas

Instead of data aggregation, data at the COA-level can be combined using the

following hierarchical model. For the sake of illustration, the linear function of

time is used as the impact function but the BHM can be specified with other
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functional forms. For each NCC-targeted COA, we have

y∗it ∼ Poisson(n∗i · θ∗it)

log(θ∗it) = α∗
i + γt + ε∗it + It≥t0,i · ηi · (t− t0,i + 1)

α∗
i ∼ N(α, σ2

u)

ηi ∼ N(µη, σ
2
η)

ε∗it ∼ N(0, σ2
ε )

Here, the NCC starting year t0,i (=5 or 6) as well as the slope in the linear

function become area-specific. A vague hyperprior is assigned to µη, the global

impact, and a moderately informative half Normal prior N(0,1) bounded strictly

below by 0 is assigned to the slope standard deviation ση. This half Normal

prior corresponds to our expectation that the impact of NCC, if present, after

the first year would result in no more than a five-fold reduction/increment of

the burglary rate in the NCC area compared to that of the control areas.

Similar to the model for the single time series data, the area-specific inter-

cepts, α∗
i , are assumed to follow the same hyper-distribution as that for the

control areas, likewise, for the overdispersion parameters ε∗it.

The coverage rate can be readily incorporated as a linear predictor of the

local impacts:

ηi ∼ N(µη,i, σ
2
η)

µη,i = β0 + β1 · coveragei

Again, a vague prior, N(0,10000), is assigned to the regression parameters β0

and β1.
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B Impact functions

The linear function considered in this paper is a simplified version of the so

called segmented regression (or piecewise linear regression) models considered

in Gillings et al. (1981) but with only one evaluation period. A slightly more

complex Bayesian model by Thum and Bhattacharya (2001) attempted to esti-

mate when the change in slope occurred. The complexity of the second model,

however, may not be required here since we know the starting years of NCC.

The generalised function considered is an autoregressive model of order 1 with a

deterministic innovation, namely ω. For continuity, we set ω = α∗−b and assign

a vague prior, N(0,10000), on b. The parameter ξ is constrained, i.e., 0 < ξ < 1,

so that the resulting function is continuous and possesses an asymptote that

f(t)→ ω
1−ξ as t→∞. In the limiting cases, when ξ = 0, the generalised func-

tion reduces to the step change function while when ξ = 1, we have the linear

function. So ξ is interpreted as a rate parameter that controls how fast (ξ → 0)

or slow (ξ → 1) the generalised function reaches its asymptote. Although this

generalised function provides a better description of change, it requires more

post-scheme observations in order to estimate the rate parameter ξ well. Nev-

ertheless, being able to allow for non-linearity has its practical attractiveness.

C Implementation of the two models

Both the control and NCC models are implemented in WinBUGS (Lunn et al.

2000), a software that is specially designed for performing Bayesian analyses.

Markov chain Monte Carlo (MCMC) methods are used to sample from the pos-

terior distributions in an iterative manner. Posterior summaries, e.g., means,

uncertainty intervals and posterior probabilities, are then obtained from these

posterior samples. The WinBUGS code is provided in Appendix D. It is worth
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mentioning that while both models are simultaneously fitted, estimation of all

model parameters for the control group is independent to the fitting of the NCC

data. Through the use of the WinBUGS cut function, the trend γ1:8, the overall

intercept, α, the intercept variance, σ2
u, and the overdispersion variance, σ2

ε , in

the control model are “fed” into the NCC model at each iteration but no infor-

mation is feeding back to the control model. This ensures the estimation of the

control trend (and other parameters) is independent to the policy quantification

but, importantly, uncertainty of these estimates are properly accounted for in

the impact estimation.

D WinBUGS code for fitting the BHM with the

linear impact function

#

# Area-specific NCC impacts are allowed in this model

# The linear impact function is used

#

model {

# constructing the control trend pattern

for (i in 1:N) {

for (t in 1:T) {

y[i,t] ~ dpois(mu[i,t])

mu[i,t] <- n[i]*p[i,t]

log(p[i,t]) <- u[i] + gamma[t] + eps[i,t]

# overdispersion

eps[i,t] ~ dnorm(0,prec.eps)

}

}

# prior for the overall intercept

alpha ~ dnorm(0,0.0001)

# RW prior for the control trend (time effects)

gamma[1:T] ~ car.normal(adj.tm[],weights.tm[],num.tm[],prec.gamma)

# place effects

for (i in 1:N) {u[i] ~ dnorm(alpha,prec.u)}
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# priors for the standard deviations

prec.gamma <- pow(sigma.gamma,-2)

sigma.gamma ~ dnorm(0,0.01)I(0,)

prec.u <- pow(sigma.u,-2)

sigma.u ~ dnorm(0,0.01)I(0,)

prec.eps <- pow(sigma.eps,-2)

sigma.eps ~ dnorm(0,0.01)I(0,)

# ‘feeding’ the overdispersion variance to the NCC model

prec.eps.ncc <- cut(prec.eps)

# model for the NCC data at the COA level

for (t in 1:T) {

for (i in 1:all.NCC) {

yN[i,t] ~ dpois(muN[i,t])

muN[i,t] <- nN[i]*pN[i,t]

# linear change

log(pN[i,t]) <- alphaN[i] + gammaN[t]

+ step(t-ncc.year[i])*eta[i]*(t-ncc.year[i]+1) + eps.ncc[i,t]

# overdispersion

eps.ncc[i,t] ~ dnorm(0,prec.eps.ncc)

}

# assigning trend adjustments from the control group model

gammaN[t] <- cut(gamma[t])

}

# prior on the place effects for the NCC COAs

for (i in 1:all.NCC) {alphaN[i] ~ dnorm(mu.alphaN,prec.alphaN)}

# imposing an informative prior (estimated from the control group)

# on the NCC intercepts

mu.alphaN <- cut(alpha)

prec.alphaN <- cut(prec.u)

# prior for the COA-specific impacts/slopes

for (i in 1:all.NCC){eta[i] ~ dnorm(mu.eta,prec.eta)}

mu.eta ~ dnorm(0,0.0001)

prec.eta <- pow(sigma.eta,-2)

sigma.eta ~ dnorm(0,1)I(0,)

# for plotting

for (t in 1:T) {time[t] <- t}

}

35


