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Abstract. Multilevel Models (MLM) have pioneered the analysis
of hierarchical data, with two or more levels. Agent-Based Models
(ABM) are also used to analyse social phenomena in which there
are two or more levels involved. This paper addresses the integra-
tion between MLM and ABM. To provide a basis of comparison,
we focus on differential school effectiveness analysis, where MLM
has been well studied, using data from the London Educational Au-
thority’s Junior Project. A MLM is fitted and an ABM of pupils’
educational attainment using a social network structure is built. We
reports the results of both models and compare their performances in
terms of predictive power. Although the fitted MLM outperforms the
proposed ABM, the latter still offers a reasonable fit and provides a
causal mechanism to explain differences in school performance that
is absent in the MLM.

1 Introduction

During the last thirty years education researchers have developed
models for judging the comparative performance of schools, in what
has been known as differential school effectiveness [13, 17]. These
variable-based models, which have achieved great sophistication, de-
termine the extent to which schools improve pupils’ educational at-
tainment. Among those models, Multilevel Models (MLM) are very
popular, since they allow the analysis of data that have a hierarchi-
cal structure, with two or more ‘levels’ (e.g., pupils and schools)
[14]. However, despite their sophistication, variable-based models
do not provide causal explanations for the observed social phe-
nomenon [12]. Thus, MLM are well-suited to identify differences
among groups, but they do not explain why those differences might
emerge in the first place, since they do not uncover the generative
mechanisms that bring them about. When researchers want to un-
derstand why some social phenomenon emerges, agent-based mod-
elling (ABM) might be the best alternative. ABM is a computational
method to experiment with models composed of autonomous agents
that interact within an environment [10]. For instance, researchers
might use ABM to explain differential school eftectiveness by focus-
ing on the dynamics of the social networks that shape and are shaped
by pupils’ interactions within and outside school. Whilst ABM is
explanatory, MLM is a sophisticated way for description and hy-
potheses testing. Nevertheless, the integration of multivariate anal-
ysis, such as MLM, and the modelling of generative mechanisms,
such as ABM, is a crucial methodological issue.
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This paper explores that possibility by formalising an ABM to ex-
plain differential school effectiveness. It describes an ABM to un-
derstand the effects of pupils’ interactions in educational attainment
using a network structure and a methodological strategy to cope with
the comparison between MLM and ABM. We begin this paper with
a brief account of MLMs in education research (Section 2). Then, we
describe the data we are using (Section 3) and we fit a MLM to eval-
uate possible group effects and the extent to which differential school
effectiveness is present in the data (Section 4). We present our pro-
posed ABM to explain differential school effectiveness (Section 5),
describing the model entities, interactions and main dynamics. The
last part of the paper presents a comparison between both modelling
techniques taking into account their predictive power (Section 6). Fi-
nally, it finishes with some concluding remarks and further work we
are going to undertake (Section 7).

2 Multilevel models in education research

In the context of educational research, MLM were developed to ad-
just simple comparisons of school mean values by using measures of
pupil prior achievement and other variables to take account of selec-
tion and other procedures that are associated with pupils’ achieve-
ment, but not related to any effect that the schools themselves may
have on achievement [11, 19]. Thus, a simple two-level, variance
components model based on data from a random sample of schools
can be written as follows, where subscript ¢ refers to the pupil, and j
to the school:

Yij = Bo + Brzsij + uj + ey,
(1)
uj ~ N (0,0’3) , eij ~ N (O,ag)

where y;; and x;; respectively are the response variable and prior at-
tainment, and u; is an underlying school effect (which is associated
with school organization, teaching, etc.). This model assumes that e;;
and u; are uncorrelated and also uncorrelated with any explanatory
variable—i.e. it assumes that any possible dependences that may re-
sult from, for example, school selection mechanisms are accounted
for. Posterior estimates 4; with associated confidence intervals are
typically used to rank schools in so-called ‘league tables’ or used as
‘screening devices’ in school improvement programmes.

Model (1) can be elaborated by introducing further covariates such
as socio-economic background or peer group characteristics, to make
additional adjustments, satisfy the distributional assumptions or in-
vestigate interactions. In addition, it is typically found that models
such as Model (1) require random coefficients, where, for example,



the coefficient of prior achievement varies randomly across schools.
In this case, using a more general notation, we have

Yij = Boij + B1j%ij,
Boi; = Po + uoj + €ij,

Bij = B1 + uij, @

eij ~ N (O7 0’3) ,
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The Multilevel Model (2) has also been extended to include further
levels of hierarchy, such as education board or authority, and random
factors which are not contained within a simple hierarchy, such as
area of pupil residence or school attended during a previous phase of
education. Such designs are known as ‘cross-classification’. In any
case, when we use a MLM, we assume that the group level makes a
difference that explains the total variance of the dependent variable
[9]. Therefore, we need to identify how important the group level
differences are (i.e., to identify the importance of the ‘school effect’),
or the proportion of the total variance accounted by the group level.
A convenient summary of this effect is the ‘interclass-correlation’
coefficient (ICC), given by the formula

T

on +o?

The proposed ABM should describe a similar pattern, that is, it
should reproduce the school effects or differences in the school effec-
tiveness that are in the data as shown by a pattern of high interclass-
correlation. The advantage of complementing MLM with a ‘bottom-
up’ approach lies not only in its power to replicate some previous dis-
coveries, but also in the the possibility of testing hypothesised causal
mechanisms that might bring about the differences in school effec-
tiveness.

p= 3)

3 Data

Our research employs a subsample from the The London Educa-
tion Authority’s Junior School Project Data for pupils’ mathemat-
ics progress over 3 years from entry to junior school to the end of
the third year in junior school [13]. This was a longitudinal study of
around 2000 children. Our subsample consists of 887 pupils from 48
schools, with five relevant variables, namely:

e School ID, an identification number assigned to each school, from
1 to 48,

e Social Class, a dummy variable representing father’s occupation,
where ‘Non Manual Occupation’” = 1 and ‘Other Occupation’ =0,

e Gender, a dummy variable representing pupils’ gender, where
‘Boy’ =1 and ‘Girl’ = 0, and

e Math 3 and Math 5, pupil’s score in math tests in year 3 and in
year 5 respectively, with a range from 0 to 40.

These data enable us to formulate a two-level model (pupils
grouped in schools). In order to establish whether a MLM is appro-
priate, we estimated an unconditional means model [18], which does
not contain any predictors but includes a random intercept variance
term for groups, and which is defined as Y;; = yoo+uo; +7:5, where
the dependent variable is a function of a common intercept yoo and

two error terms: the between-group error term, uo;, and the within-
group error term, r;;. This model is useful since we can get two es-
timates of variance from it: 799 for how much each groups intercept
varies from the overall intercept (yoo), and o2 for how much each in-
dividual score differs from the group mean. An analysis of this model
showed that the ICC (see Equation (3)) equals 0.119, so an important
portion of the variance (= 12%) is explained by the pupils’ group
(i.e., school) membership. Further, the overall group mean reliability
test [4] of the outcome variable equals 0.67, although several schools
have quite low estimates. In fact, just 22 over 48 schools have group
mean reliability over 0.7, which is the conventional value to deter-
mine whether groups can be reliably differentiated. Finally, we get
from our unconditional means model that the intercept variance 7oo
is significantly different from zero, x*(3) = 52.3, p < .0001. There-
fore, the analysis shows that fitting a MLM is a sensible decision.

However, given the great heterogeneity in group mean reliability
among the schools, we decided to perform our analysis and simula-
tions considering just those 22 schools that described high estimates
in this test, representing 558 pupils. By doing so, we will base our
analysis on data that contains schools that are reliably different one
from another. Both the exploratory nature of our research and the
early experimental stage we are at justify this decision.

4 Fitting a Multilevel Model

The multilevel models used for the analysis of the second maths test
scores (year 5) were elaborated to take into account relevant back-
ground factors and prior attainment (i.e., year 3). The models were
compared in order to evaluate their overall fit. In Table (1), Model 0 is
a base model, with no predictors but just random intercepts. Model 1
considers one predictor, in this case previous attainment, and the in-
tercepts of the groups were allowed to vary randomly . Model 2 adds
to the previous model background factors for each pupil, namely:
gender and social class. Finally, Model 3 considers both previous
attainment, background factors and, additionally, the slopes of previ-
ous attainment, which were allowed to vary randomly across the 22
schools. The results shown in Table (1) establish that Model 3, which
allows random slopes, has a significantly better fit to the data than
Model 0, Model 1 and Model 2.

df AIC BIC log Lik
Models
Model 0 3 3858.127  3871.257 —1926.064
Model 1 4 3660.438  3677.945 —1826.219
Model 2 6 3659.913  3686.174 —1823.957
Model 3 8 3657.157  3692.170 —1820.578
Tests x2 p-value
Ovsl 199.689 < 0.001
1vs2 4.525 0.104
2vs3 6.757 0.034

Table 1. Comparison of Fitted Models

Figure (1) depicts the slopes of previous attainment in Math 3 for
each of the 22 schools selected for the analysis. These plots confirm
the tests of Table (1), showing the variation in slope among schools
is important. Therefore, a random slope model was selected for anal-
ysis. Further, in this model, in order to establish whether the schools



were differentially effective, previous attainment was allowed to vary
randomly at both the pupil and the school levels.
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Figure 1. Scatterplots for each of the 22 Schools

The results obtained from fitting a model with a random slope
for prior maths attainment, controlling by gender and social class,
are shown in Table (2). The average intercept across all the schools,
Bo, equals 12.65 (std. error 1.79) and the average slope for Math 3
across the 22 schools ;1 equals 0.6 (std. error 0.05). Both parame-
ters are significant. The individual school slopes, u1;, vary around
the average slope with a standard deviation estimated as 0.14. The
intercepts of the individual schools, uo;, also differ, with a standard
deviation estimated as 6.04. In addition, there is a negative covari-
ance between intercepts and slopes, 0,01, estimated as —0.98, sug-
gesting that schools with higher intercepts tend to have lower slopes.
Finally, the pupils’ individual scores vary around their schools’ lines
by quantities e;;, the level 1 residuals, whose standard deviation is
estimated as 5.17.

The two control variables included in the model, gender and social
class, perform differently. Only just social class (i.e., ‘Nonman’ in
Table (2)) is making a contribution to the model, with an estimated
regression coefficient of 1.17 (std. error 0.53, p < 0.05). Conse-
quently, pupils whose father’s occupation is non-manual have an ex-
pected advantage of 1.17 points in Math 5 in comparison to those stu-
dents whose father’s occupation is manual. On the other hand, gender
(i.e., ‘Boy’ in Table (2)) does not contribute to the predictive power
of the model, since its regression coefficient is not significantly dif-
ferent from zero.

With the information obtained from the MLM, predictions might
be carried out for every pupil in one of the 22 schools. Thus, for
instance, let us take a boy student from school 32, whose previous
attainment in Maths at year 3 was 22, and whose father’s occupation
is classified as manual. From the MLM we know that the group-
intercept for this school ug,32 equals 6.7869 and its group-slope for
previous attainment w1 32 equals —0.1418. These values may be in-

Parameters (Outcome Variable: Math 5)

Random Effects

Estimate
St. Dev. (o) Intercept (uq;) 6.04
Math 3 (ulj) 0.14
Residual (e;;) 5.17
Math 3/Intercept (0,01) —0.98
Fixed Effects
Estimate Std. Error
Coefficients (8,,) Intercept (8o) 12.65%** 1.79
Math 3 (31) 0.60*** 0.05
Nonman (32) 1.17* 0.53
Boy (83) —0.02 0.44

Note. Signif. codes: *** = p < 0.001, ** = p < 0.01, * = p < 0.05.

Table 2. Parameters of Random Slope Model for Previous Attainment

corporated into Equation (2) to obtain the predicted value in Math 5
for this student ~ 29.5.

5 Agent-Based Model

The ABM we propose addresses the problem of explaining the dif-
ferences in school effectiveness by taking into account the inputs of
knowledge that every student receives from her or his social environ-
ment (i.e., the other individuals with whom the student interacts) in
relation to one specific subject they are supposed to learn. Thus, our
model considers the relevant social network in which the pupil is em-
bedded. Furthermore, in order to establish comparisons and possible
integrations between this ABM and the MLM explained in Section
(4), we empirically calibrated the former using the same data we re-
ferred to in Section (3). The ABM was built in NetLogo 4.1.2 [21].

5.1 Theoretical framework

The importance of taking into account the network in which a pupil is
embedded in order to explain her or his educational attainment is well
established in the literature. Since the observational study carried out
by Rist [16] in the seventies, educational researchers have been aware
of the impact the student-teacher relationship might have on pupils’
learning. Thus, schools where teachers have higher expectations re-
garding the future of their students might perform better compared
to others where teachers have lower expectations [7]. These expec-
tations determine which pupils are defined by the teacher as ‘fast
learners’ and which ones as ‘slow learners’. In this way, teachers’ be-
haviour contribute to a ‘self-fulfilling prophecy’, that is, pupils who
are considered ‘slow learners’ in advance receive less attention and
educational feedback, and consequently, they perform worse com-
pared to pupils who are considered ‘fast learners’ in advance. Equally
important are the pupils’ characteristics within the classroom, for
which the effect on children’s educational achievement has been well
documented. Beckerman and Good [3] showed that classrooms in
which more than a third of the children were ‘high-aptitude’ students
and less than a third were ‘low-aptitude’ performed better than those
classrooms in which the opposite was true. Their results indicated
that both high- and low- aptitude students in the first kind of class-
room had greater achievement gains than comparable students in less



‘favourable classrooms’. These findings are consistent with the ‘peer-
effect” hypothesis, something that has been modelled by using Social
Network Analysis [6] (however, see [8] for disconfirmatory evidence
of peer-effect on educational achievement). Finally, the cultural cap-
ital that pupils’ families possess has an important effect on students’
performance [5, 20]. Hence, previous research in the field allows us
to focus on three dimensions that are relevant to explain school dif-
ferential effectiveness: (a) educational feedback pupils receive from
their teachers; (b) pupil-pupil interactions and (c) pupils cultural cap-
ital. These three social dimensions of education are the elements we
aim to model.

5.2 Model description

The ABM was designed with two basic assumptions. The first as-
sumption deals with the way in which pupils’ learning of one spe-
cific topic evolves over time. It seems reasonable to assume that this
learning can be modelled as a logarithmic function of the educational
feedback received in the subject. Thus, there is an initial period of
rapid increase, followed by a period where the growth in learning
slows (evidence supporting this pattern of learning in [2]).

o
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Figure 2. Simulated Pupils’ Learning Curve

To model pupils’ learning in maths from year 3 to year 5, we define
a students’ learning curve. Firstly, we assume that learning maths is
a continuous process starting at the first maths lesson, lesson 0, and
ending when the knowledge of maths is measured in year 5 (or Math
5). We arbitrarily define 1,000 as the number of lessons for the entire
learning process. This operationalises the lesson-pupil contact time.
Figure (2) shows the students’ learning curve employed in the ABM.
Simulated students’ marks are worked out as a function of the num-
ber of lessons they have undertaken. We also assume that when the
test Math 3 is applied, students have learned half of the topics they
were supposed to learn on the subject. Further, since both Math 3 and
Math 5 range between 0 and 40, we transform Math 3 by dividing it
by 2. Secondly, we assume that the number of trainings students un-
dertake depends on the socialisation processes within their schools.
By socialisation we mean all those practices and rules that eventu-
ally generate stable groups of students. A group is stable when its

members do not want to leave, that is, they are ‘happy’ as members
of the specific group. Let gi be a stable group in a school j and s;x a
student in such a group. Let math3y, be the average of Math 3 scores
of group g, then the number of lessons that the students in group k
agree to undertake is given by the following equation:

tk: _ (e2~math3k)m (4)

Then, the simulated student’s score simM athb;, is shown in
Equation (5), where tir = tx + tmatn3,: and tma¢n3,s is the num-
ber of trainings the pupils in group k£ have had when their attainment
is measured as Math 3.

simMathb;, = log (t?k790593) )

The second assumption is related to the group formation mecha-
nisms. We propose a refinement of Resnick and Wilensky’s model
[15]. There is an initial number of spots where students can hang
out. Students staying at the same spot conform a group. Following
the specialised literature, we assume that group formation rules are
stable and similar for all the individuals within the school, and they
emerge as a permanent tradeoff between individual characteristics
and institutional factors [1]. We are not interested in giving an ac-
count of the emergence of these rules; we assume that they exist
within all the schools. Thus, in the ABM, pupils’ tolerances towards
their schoolmates vary across schools. These tolerances define, in
turn, students’ comfort levels within groups of pupils within their
schools. If they are in a group that has, for example, a higher per-
centage of people of the opposite sex than the school’s tolerance,
then they are considered ‘uncomfortable”, and they leave that group
for the next spot. Movement continues until everyone at the school is
“comfortable” with their group. The final number of groups might be
smaller than the number of spots. Taking into account the available
data (see Section (3)), we define three tolerance levels: Educational
tolerance, that reflects the students’ tolerance of accepting others
with different attainments in Math 3; Gender tolerance indicates the
students’ tolerance for people of the opposite sex; and Social class
tolerance, the pupils’ tolerance for different social class. If any one
of these these three tolerances are not met, the pupil will leave the
group. Tolerance levels range between 0 and 1 and corresponds to
the proportion of similar pupils within each group. Figure (3) shows
the student network at the end of a simulation for school 32. Male
and female pupils are coloured blue and pink respectively; rounded
and squared shaped nodes represent low and high social class re-
spectively; and previous attainment in Math 3 is labelled on students’
icons. In this scenario, education, gender and class tolerances are 0.9,
0.3 and 0.9 respectively. There are 39 students in school 32 and these
form themselves into 15 groups.

5.3 Model Calibration

We performed a series of experiments with our ABM. The objective
of these experiments is to find a set of tolerance levels for each school
that minimises the differences between the data and the simulations
results. Thus, let d; be such a difference for school j. Then,

n
d; =Y |math5; — simMath5;| /2 (6)

=1
where mathb; and simM athb; are the score in Math 5 of student
i obtained from the real data and from the simulations respectively.
In the example shown in Figure (3), d32 = 2.231, which means that
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Figure 3. Simulated Students Social Network in School # 32

the simulated score in Math 5 differs, on average, from the data by
+2.231 units. In order to explore the parameter space of the model,
we ran 126, 720 simulations. This represents all the possible combi-
nation of the three tolerance levels (varying among 0.3, 0.5, 0.7 and
0.9) and the number of spots (varying among 15, 20 and 25) across
the 22 schools. In order to have more robust results, we ran each
setting 30 times and then took the average of d; as the aggregate
outcome.

6 Comparing MLM and ABM

Table (3) shows the main results obtained from our experiments.
There, we present the average distance (in the same units as the
real data) between the predicted scores and the real scores in Math
5 for both the multilevel model (‘MLM (d;)’) and the simulation
(‘ABM (d;)’) respectively. The results are grouped according to the
22 schools we included in our study. As well, in this table we show
the number of groups (‘Final Groups’) in which all the pupils were
happy with their group membership, given the values in the ‘Toler-
ance Levels’ for education, gender and social class (see the last three
columns of Table (3). Recall that these three last variables were set as
simulation parameters, and the specific values presented in the table
correspond to those combinations at the school level that minimise
the distance between the simulated and the real data scores in Math
5. Some remarks might be established.

Firstly, by comparing the average between the two models, we
see that the predictions of the multilevel model outperform the pre-
dictions of the agent-based model, so the former is more accurate.
However, the prediction errors of the ABM are not high; in fact, the
overall distance equals 3.04 on a scale of 40 points. Thus, the ABM,
despite its simplicity, offers a reasonable fit to the data. Secondly, the
simulation results suggest a high educational tolerance, since most
of values equal 90% (except from school 30, in which the tolerance
level equals 70%). On the other hand, the tolerance levels of social
class and gender vary across the schools. Therefore, the group forma-
tion mechanism in our simulation seems to be ruled by the variables

Tolerance Levels

School Num. MLM ABM Final Edu.  Gender Soc.

Id Pupils (djy) (dy) Groups Class
1 25 2.88 3.36 13 90% 50% 30%
4 24 2.26 3.12 12 90% 90% 50%
5 25 1.53 2.26 12 90% 70% 90%
8 26 1.41 2.82 12 90% 70% 30%
9 21 1.67 291 12 90% 70% 30%
11 22 2.21 3.10 12 90% 30% 70%
12 19 3.03 3.55 12 90% 50% 30%
20 28 1.60 2.62 12 90% 30% 70%
22 18 2.18 3.63 10 90% 30% 70%
23 21 143 3.19 12 90% 90% 50%
25 20 2.60 3.50 11 90% 30% 50%
26 19 1.85 2.79 12 90% 70% 50%
29 20 2.30 3.36 12 90% 70% 30%
30 35 1.03 2.56 14 70% 90% 70%
31 22 2.30 3.60 12 90% 70% 50%
32 39 1.72 2.71 15 90% 30% 90%
33 25 1.22 3.04 12 90% 30% 90%
35 27 1.01 2.44 13 90% 70% 30%
41 38 2.46 3.25 16 90% 30% 70%
45 30 1.58 2.62 12 90% 30% 70%
46 62 2.24 2.96 15 90% 90% 70%
47 22 1.85 3.61 12 90% 50% 90%

Table 3. Experimental Results

social class and gender, and previous attainment in maths does not
constitute a variable that discriminates between groups. Thirdly, the
hypothesised mechanism that bring about the differences in school
effectiveness, based on social interactions among pupils and group
formation according to tolerance levels defined at the school level,
seems to be justified. The simulation results indicate that the mecha-
nism of group formation helps to minimise the distance between the
predicted and the real scores, allowing a better fit with the data. For
instance, when we compare the number of groups with the number of
pupils, we can see that in general we have less groups than students
in each school (for a graphical example, see Figure 3). If the numbers
of groups made no difference in the simulation, then the number of
groups and the number of pupils would tend to be similar (at least in
those schools with number of pupils < 25). This is clearly not the
case. Therefore, the pupils’ social networks seem to be important to
explain the differential effectiveness among schools.

7 Concluding Remarks

In this paper we have presented and compared the results of two
models to address differential school effectiveness. The first one is
a MLM, where the hierarchical nature of educational processes is
considered. The second one is an ABM, where the social mecha-
nisms that might generate school effects in pupil attainments are for-
malised and explored. We found that the MLM provides reasonably
accurate prediction, whereas the ABM highlights likely differences
across schools that might affect pupils’ learning performances. This
is a promising study that will be further developed. More sophisti-
cated ABM will be designed to produce predictions as accurate as
the MLM. Furthermore, data coming from the ABM will be fed into
the MLM model until the former produces results similar to those
in the real data. All in all, integrating a social mechanism based ap-
proach of educational phenomena with a hierarchical understanding
of this process it is a productive and useful enterprise.
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