Multilevel and Agent-Based Modelling in the Analysis of Differential School Effectiveness

Mauricio Salgado and Elio Marchione

Abstract. Multilevel Models (MLM) have pioneered the analysis of hierarchical data, with two or more levels. Agent-Based Models (ABM) are also used to analyse social phenomena in which there are two or more levels involved. This paper addresses the integration between MLM and ABM. To provide a basis of comparison, we focus on differential school effectiveness analysis, where MLM has been well studied, using data from the London Educational Authority’s Junior Project. A MLM is fitted and an ABM of pupils’ educational attainment using a social network structure is built. We report the results of both models and compare their performances in terms of predictive power. Although the fitted MLM outperforms the proposed ABM, the latter still offers a reasonable fit and provides a causal mechanism to explain differences in school performance that is absent in the MLM.

1 Introduction

During the last thirty years education researchers have developed models for judging the comparative performance of schools, in what has been known as differential school effectiveness [13, 17]. These variable-based models, which have achieved great sophistication, determine the extent to which schools improve pupils’ educational attainment. Among those models, Multilevel Models (MLM) are very popular, since they allow the analysis of data that have a hierarchical structure, with two or more ‘levels’ (e.g., pupils and schools) [14]. However, despite their sophistication, variable-based models do not provide causal explanations for the observed social phenomenon [12]. Thus, MLM are well-suited to identify differences among groups, but they do not explain why those differences might emerge in the first place, since they do not uncover the generative mechanisms that bring them about. When researchers want to understand why some social phenomenon emerges, agent-based modelling (ABM) might be the best alternative. ABM is a computational method to experiment with models composed of autonomous agents that interact within an environment [10]. For instance, researchers might use ABM to explain differential school effectiveness by focusing on the dynamics of the social networks that shape and are shaped by pupils’ interactions within and outside school. Whilst ABM is explanatory, MLM is a sophisticated way for description and hypotheses testing. Nevertheless, the integration of multivariate analysis, such as MLM, and the modelling of generative mechanisms, such as ABM, is a crucial methodological issue.

This paper explores that possibility by formalising an ABM to explain differential school effectiveness. It describes an ABM to understand the effects of pupils’ interactions in educational attainment using a network structure and a methodological strategy to cope with the comparison between MLM and ABM. We begin this paper with a brief account of MLMs in education research (Section 2). Then, we describe the data we are using (Section 3) and fit a MLM to evaluate possible group effects and the extent to which differential school effectiveness is present in the data (Section 4). We present our proposed ABM to explain differential school effectiveness (Section 5), describing the model entities, interactions and main dynamics. The last part of the paper presents a comparison between both modelling techniques taking into account their predictive power (Section 6). Finally, it finishes with some concluding remarks and further work we are going to undertake (Section 7).

2 Multilevel models in education research

In the context of educational research, MLM were developed to adjust simple comparisons of school mean values by using measures of pupil prior achievement and other variables to take account of selection and other procedures that are associated with pupils’ achievement, but not related to any effect that the schools themselves may have on achievement [11, 19]. Thus, a simple two-level, variance components model based on data from a random sample of schools can be written as follows, where subscript i refers to the pupil, and j to the school:

\[y_{ij} = \beta_0 + \beta_1 x_{ij} + u_j + e_{ij}, \]

\[u_j \sim N(0, \sigma_u^2), \quad e_{ij} \sim N(0, \sigma_e^2) \]

where \(y_{ij} \) and \(x_{ij} \) respectively are the response variable and prior attainment, and \(u_j \) is an underlying school effect (which is associated with school organization, teaching, etc.). This model assumes that \(e_{ij} \) and \(u_j \) are uncorrelated and also uncorrelated with any explanatory variable—i.e. it assumes that any possible dependences that may result from, for example, school selection mechanisms are accounted for. Posterior estimates \(\hat{u}_j \) with associated confidence intervals are typically used to rank schools in so-called ‘league tables’ or used as ‘screening devices’ in school improvement programmes.

Model (1) can be elaborated by introducing further covariates such as socio-economic background or peer group characteristics, to make additional adjustments, satisfy the distributional assumptions or investigate interactions. In addition, it is typically found that models such as Model (1) require random coefficients, where, for example,
the coefficient of prior achievement varies randomly across schools. In this case, using a more general notation, we have

\[y_{ij} = \beta_0 + \beta_1 x_{ij} + \epsilon_{ij}, \]

\[\beta_{0ij} = \beta_0 + u_{0ij} + e_{ij}, \]

\[\beta_{1ij} = \beta_1 + u_{1ij}, \]

\[e_{ij} \sim N(0, \sigma^2), \]

\[(u_{0ij}, u_{1ij}) \sim N(0, \Omega), \Omega = \left(\begin{array}{cc} \sigma_{u0}^2 & \rho \sigma_{u0} \sigma_{u1} \\ \rho \sigma_{u0} \sigma_{u1} & \sigma_{u1}^2 \end{array} \right) \]

The Multilevel Model (2) has also been extended to include further levels of hierarchy, such as education board or authority, and random factors which are not contained within a simple hierarchy, such as area of pupil residence or school attended during a previous phase of education. Such designs are known as ‘cross-classification’. In any case, when we use a MLM, we assume that the group level makes a difference that explains the total variance of the dependent variable [9]. Therefore, we need to identify how important the group level differences are (i.e., to identify the importance of the ‘school effect’), or the proportion of the total variance accounted by the group level. A convenient summary of this effect is the ‘interclass-correlation’ coefficient (ICC), given by the formula

\[\rho = \frac{\sigma_{\text{inter}}^2}{\sigma_{\text{inter}}^2 + \sigma_{\text{error}}^2} \]

The proposed ABM should describe a similar pattern, that is, it should reproduce the school effects or differences in the school effectiveness that are in the data as shown by a pattern of high interclass-correlation. The advantage of complementing MLM with a ‘bottom-up’ approach lies not only in its power to replicate some previous discoveries, but also in the possibility of testing hypothesised causal mechanisms that might bring about the differences in school effectiveness.

3 Data

Our research employs a subsample from the The London Education Authority’s Junior School Project Data for pupils’ mathematics progress over 3 years from entry to junior school to the end of the third year in junior school [13]. This was a longitudinal study of around 2000 children. Our subsample consists of 887 pupils from 48 schools, with five relevant variables, namely:

- **School ID**, an identification number assigned to each school, from 1 to 48,
- **Social Class**, a dummy variable representing father’s occupation, where ‘Non Manual Occupation’ = 1 and ‘Other Occupation’ = 0,
- **Gender**, a dummy variable representing pupils’ gender, where ‘Boy’ = 1 and ‘Girl’ = 0, and
- **Math 3 and Math 5**, pupil’s score in math tests in year 3 and in year 5 respectively, with a range from 0 to 40.

These data enable us to formulate a two-level model (pupils grouped in schools). In order to establish whether a MLM is appropriate, we estimated an unconditional means model [18], which does not contain any predictors but includes a random intercept variance term for groups, and which is defined as

\[Y_{ij} = y_{00} + u_{0ij} + r_{ij}, \]

where the dependent variable is a function of a common intercept \(y_{00} \) and two error terms: the between-group error term, \(u_{0ij} \), and the within-group error term, \(r_{ij} \). This model is useful since we can get two estimates of variance from it: \(\tau_{00} \) for how much each groups intercept varies from the overall intercept \(y_{00} \), and \(\sigma^2 \) for how much each individual score differs from the group mean. An analysis of this model showed that the ICC (see Equation (3)) equals 0.119, so an important portion of the variance (\(\approx 12\% \)) is explained by the pupils’ group (i.e., school) membership. Further, the overall group mean reliability test [4] of the outcome variable equals 0.67, although several schools have quite low estimates. In fact, just 22 over 48 schools have group mean reliability over 0.7, which is the conventional value to determine whether groups can be reliably differentiated. Finally, we get from our unconditional means model that the intercept variance \(\tau_{00} \) is significantly different from zero, \(\chi^2(3) = 52.3, p < .0001 \). Therefore, the analysis shows that fitting a MLM is a sensible decision.

However, given the great heterogeneity in group mean reliability among the schools, we decided to perform our analysis and simulations considering just those 22 schools that described high estimates in this test, representing 558 pupils. By doing so, we will base our analysis on data that contains schools that are reliably different one from another. Both the exploratory nature of our research and the early experimental stage we are at justify this decision.

4 Fitting a Multilevel Model

The multilevel models used for the analysis of the second maths test scores (year 5) were elaborated to take into account relevant background factors and prior attainment (i.e., year 3). The models were compared in order to evaluate their overall fit. In Table (1), Model 0 is a base model, with no predictors but just random intercepts. Model 1 considers one predictor, in this case previous attainment, and the intercepts of the groups were allowed to vary randomly. Model 2 adds to the previous model background factors for each pupil, namely: gender and social class. Finally, Model 3 considers both previous attainment, background factors and, additionally, the slopes of previous attainment, which were allowed to vary randomly across the 22 schools. The results shown in Table (1) establish that Model 3, which allows random slopes, has a significantly better fit to the data than Model 0, Model 1 and Model 2.

<table>
<thead>
<tr>
<th>df</th>
<th>AIC</th>
<th>BIC</th>
<th>log Lik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 0</td>
<td>3</td>
<td>3858.127</td>
<td>3871.257</td>
</tr>
<tr>
<td>Model 1</td>
<td>4</td>
<td>3600.438</td>
<td>3677.945</td>
</tr>
<tr>
<td>Model 2</td>
<td>6</td>
<td>3659.913</td>
<td>3686.174</td>
</tr>
<tr>
<td>Model 3</td>
<td>8</td>
<td>3657.157</td>
<td>3692.170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tests</th>
<th>(\chi^2)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 vs 1</td>
<td>199.689</td>
<td>< 0.001</td>
</tr>
<tr>
<td>1 vs 2</td>
<td>4.525</td>
<td>0.104</td>
</tr>
<tr>
<td>2 vs 3</td>
<td>6.757</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Table 1. Comparison of Fitted Models

Figure (1) depicts the slopes of previous attainment in Math 3 for each of the 22 schools selected for the analysis. These plots confirm the tests of Table (1), showing the variation in slope among schools is important. Therefore, a random slope model was selected for analysis. Further, in this model, in order to establish whether the schools
were differentially effective, previous attainment was allowed to vary randomly at both the pupil and the school levels.

The results obtained from fitting a model with a random slope for prior maths attainment, controlling by gender and social class, are shown in Table (2). The average intercept across all the schools, β_0, equals 12.65 (std. error 1.79) and the average slope for Math 3 across the 22 schools β_1 equals 0.6 (std. error 0.05). Both parameters are significant. The individual school slopes, u_{i1}, vary around the average slope with a standard deviation estimated as 0.14. The intercepts of the individual schools, u_{0i}, also differ, with a standard deviation estimated as 6.04. In addition, there is a negative covariance between intercepts and slopes, σ_{u01}, estimated as -0.98, suggesting that schools with higher intercepts tend to have lower slopes. Finally, the pupils’ individual scores vary around their schools’ lines by quantities e_{ij}, the level 1 residuals, whose standard deviation is estimated as 5.17.

The two control variables included in the model, gender and social class, perform differently. Only just social class (i.e., ‘Nonman’ in Table (2)) is making a contribution to the model, with an estimated regression coefficient of 1.17 (std. error 0.53, $p < 0.05$). Consequently, pupils whose father’s occupation is non-manual have an expected advantage of 1.17 points in Math 5 in comparison to those students whose father’s occupation is manual. On the other hand, gender (i.e., ‘Boy’ in Table (2)) does not contribute to the predictive power of the model, since its regression coefficient is not significantly different from zero.

With the information obtained from the MLM, predictions might be carried out for every pupil in one of the 22 schools. Thus, for instance, let us take a boy student from school 32, whose previous attainment in Maths at year 3 was 22, and whose father’s occupation is classified as manual. From the MLM we know that the group-intercept for this school $u_{0,32}$ equals 6.7869 and its group-slope for previous attainment $u_{1,32}$ equals -0.1418. These values may be incorporated into Equation (2) to obtain the predicted value in Math 5 for this student ≈ 29.5.

5 Agent-Based Model

The ABM we propose addresses the problem of explaining the differences in school effectiveness by taking into account the inputs of knowledge that every student receives from her or his social environment (i.e., the other individuals with whom the student interacts) in relation to one specific subject they are supposed to learn. Thus, our model considers the relevant social network in which the pupil is embedded. Furthermore, in order to establish comparisons and possible integrations between this ABM and the MLM explained in Section (4), we empirically calibrated the former using the same data we referred to in Section (3). The ABM was built in NetLogo 4.1.2 [21].

5.1 Theoretical framework

The importance of taking into account the network in which a pupil is embedded in order to explain her or his educational attainment is well established in the literature. Since the observational study carried out by Rist [16] in the seventies, educational researchers have been aware of the impact the student-teacher relationship might have on pupils’ learning. Thus, schools where teachers have higher expectations regarding the future of their students might perform better compared to others where teachers have lower expectations [7]. These expectations determine which pupils are defined by the teacher as ‘fast learners’ and which ones as ‘slow learners’. In this way, teachers’ behaviour contribute to a ‘self-fulfilling prophecy’, that is, pupils who are considered ‘slow learners’ in advance receive less attention and educational feedback, and consequently, they perform worse compared to pupils who are considered ‘fast learners’ in advance. Equally important are the pupils’ characteristics within the classroom, for which the effect on children’s educational achievement has been well documented. Beckerman and Good [3] showed that classrooms in which more than a third of the children were ‘high-aptitude’ students and less than a third were ‘low-aptitude’ performed better than those classrooms in which the opposite was true. Their results indicated that both high- and low- aptitude students in the first kind of classroom had greater achievement gains than comparable students in less
favourable classrooms. These findings are consistent with the ‘peer-effect’ hypothesis, something that has been modelled by using Social Network Analysis [6] (however, see [8] for disconfirmatory evidence of peer-effect on educational achievement). Finally, the cultural capital that pupils’ families possess has an important effect on students’ performance [5, 20]. Hence, previous research in the field allows us to focus on three dimensions that are relevant to explain school differential effectiveness: (a) educational feedback pupils receive from their teachers; (b) pupil-pupil interactions and (c) pupils cultural capital. These three social dimensions of education are the elements we aim to model.

5.2 Model description
The ABM was designed with two basic assumptions. The first assumption deals with the way in which pupils’ learning of one specific topic evolves over time. Thus, there is an initial period of rapid increase, followed by a period where the growth in learning slows (evidence supporting this pattern of learning in [2]).

![Figure 2. Simulated Pupils’ Learning Curve](image)

To model pupils’ learning in maths from year 3 to year 5, we define a students’ learning curve. Firstly, we assume that learning maths is a continuous process starting at the first maths lesson, lesson 0, and ending when the knowledge of maths is measured in year 5 (or Math 5). We arbitrarily define 1,000 as the number of lessons for the entire learning process. This operationalises the lesson-pupil contact time. Figure (2) shows the students’ learning curve employed in the ABM. Simulated students’ marks are worked out as a function of the number of lessons they have undertaken. We also assume that when the test Math 3 is applied, students have learned half of the topics they are supposed to learn on the subject. Further, since both Math 3 and Math 5 range between 0 and 40, we transform Math 3 by dividing it by 2. Secondly, we assume that the number of trainings students undertake depends on the socialisation processes within their schools. By socialisation we mean all those practices and rules that eventually generate stable groups of students. A group is stable when its members do not want to leave, that is, they are ‘happy’ as members of the specific group. Let \(g_k \) be a stable group in a school \(j \) and \(s_{ik} \) a student in such a group. Let \(\text{math}_5 \) be the average of Math 3 scores of group \(g_k \), then the number of lessons that the students in group \(k \) agree to undertake is given by the following equation:

\[
t_k = \left(e^{\text{math}_5} \right)^{1/6}
\]

Then, the simulated student’s score \(\text{simMath}_5 \) is shown in Equation (5), where \(t_{ik} = t_k + t_{\text{math}_3,i} \) and \(t_{\text{math}_3,i} \) is the number of trainings the pupils in group \(k \) have had when their attainment is measured as Math 3.

\[
\text{simMath}_5 = \log \left(t_{ik}^{-790593} \right)
\]

The second assumption is related to the group formation mechanisms. We propose a refinement of Resnick and Wilensky’s model [15]. There is an initial number of spots where students can hang out. Students staying at the same spot conform a group. Following the specialised literature, we assume that group formation rules are stable and similar for all the individuals within the school, and they emerge as a permanent tradeoff between individual characteristics and institutional factors [1]. We are not interested in giving an account of the emergence of these rules; we assume that they exist within all the schools. Thus, in the ABM, pupils’ tolerances towards their schoolmates vary across schools. These tolerances define, in turn, students’ comfort levels within groups of pupils within their schools. If they are in a group that has, for example, a higher percentage of people of the opposite sex than the school’s tolerance, then they are considered ‘uncomfortable’, and they leave that group for the next spot. Movement continues until everyone at the school is “comfortable” with their group. The final number of groups might be smaller than the number of spots. Taking into account the available data (see Section (3)), we define three tolerance levels: Educational tolerance, that reflects the students’ tolerance of accepting others with different attainments in Math 3; Gender tolerance indicates the students’ tolerance for people of the opposite sex; and Social class tolerance, the pupils’ tolerance for different social class. If any one of these three tolerances are not met, the pupil will leave the group. Tolerance levels range between 0 and 1 and corresponds to the proportion of similar pupils within each group. Figure (3) shows the student network at the end of a simulation for school 32. Male and female pupils are coloured blue and pink respectively; rounded and squared shaped nodes represent low and high social class respectively; and previous attainment in Math 3 is labelled on students’ icons. In this scenario, education, gender and class tolerances are 0.9, 0.3 and 0.9 respectively. There are 39 students in school 32 and these form themselves into 15 groups.

5.3 Model Calibration
We performed a series of experiments with our ABM. The objective of these experiments is to find a set of tolerance levels for each school that minimises the differences between the data and the simulations results. Thus, let \(d_j \) be such a difference for school \(j \). Then,

\[
d_j = \sum_{i=1}^{n} |\text{math}_5 - \text{simMath}_5| / 2
\]

where \(\text{math}_5 \) and \(\text{simMath}_5 \) are the score in Math 5 of student \(i \) obtained from the real data and from the simulations respectively. In the example shown in Figure (3), \(d_{32} = 2.231 \), which means that
the simulated score in Math 5 differs, on average, from the data by ±2.231 units. In order to explore the parameter space of the model, we ran 126,720 simulations. This represents all the possible combination of the three tolerance levels (varying among 0.3, 0.5, 0.7 and 0.9) and the number of spots (varying among 15, 20 and 25) across the 22 schools. In order to have more robust results, we ran each setting 30 times and then took the average of d_j as the aggregate outcome.

6 Comparing MLM and ABM

Table (3) shows the main results obtained from our experiments. There, we present the average distance (in the same units as the real data) between the predicted scores and the real scores in Math 5 for both the multilevel model (‘MLM (d_{j})’) and the simulation (‘ABM (d_{j})’) respectively. The results are grouped according to the 22 schools we included in our study. As well, in this table we show the number of groups (‘Final Groups’) in which all the pupils were happy with their group membership, given the values in the ‘Tolerance Levels’ for education, gender and social class (see the last three columns of Table 3). Recall that these last three variables were set as simulation parameters, and the specific values presented in the table correspond to those combinations at the school level that minimise the distance between the simulated and the real data scores in Math 5. Some remarks might be established.

Firstly, by comparing the average between the two models, we see that the predictions of the multilevel model outperform the predictions of the agent-based model, so the former is more accurate. However, the prediction errors of the ABM are not high; in fact, the overall distance equals 3.04 on a scale of 40 points. Thus, the ABM, despite its simplicity, offers a reasonable fit to the data. Secondly, the simulation results suggest a high educational tolerance, since most of values equal 90% (except from school 30, in which the tolerance level equals 70%). On the other hand, the tolerance levels of social class and gender vary across the schools. Therefore, the group formation mechanism in our simulation seems to be ruled by the variables social class and gender, and previous attainment in maths does not constitute a variable that discriminates between groups. Thirdly, the hypothesised mechanism that bring about the differences in school effectiveness, based on social interactions among pupils and group formation according to tolerance levels defined at the school level, seems to be justified. The simulation results indicate that the mechanism of group formation helps to minimise the distance between the predicted and the real scores, allowing a better fit with the data. For instance, when we compare the number of groups with the number of pupils, we can see that in general we have less groups than students in each school (for a graphical example, see Figure 3). If the number of groups made no difference in the simulation, then the number of groups and the number of pupils would tend to be similar (at least in those schools with number of pupils \(\leq 25 \)). This is clearly not the case. Therefore, the pupils’ social networks seem to be important to explain the differential effectiveness among schools.

7 Concluding Remarks

In this paper we have presented and compared the results of two models to address differential school effectiveness. The first one is a MLM, where the hierarchical nature of educational processes is considered. The second one is an ABM, where the social mechanisms that might generate school effects in pupil attainments are formalised and explored. We found that the MLM provides reasonably accurate prediction, whereas the ABM highlights likely differences across schools that might affect pupils’ learning performances. This is a promising study that will be further developed. More sophisticated ABM will be designed to produce predictions as accurate as the MLM. Furthermore, data coming from the ABM will be fed into the MLM model until the former produces results similar to those of the MLM. Furthermore, data coming from the ABM will be fed into the MLM model until the former produces results similar to those of the MLM. All in all, integrating a social mechanism based approach of educational phenomena with a hierarchical understanding of this process it is a productive and useful enterprise.
ACKNOWLEDGEMENTS

This paper is part of an ESRC–NCRM Collaborative Project named ‘Multilevel and Agent-Based Modelling: Comparison and Integration’. We thank Professor Nigel Gilbert, Dr. Edmund Chattoe-Brown, Professor Fiona A. Steele and Professor Sylvia Richardson for their helpful review and comments on early versions of this paper.

REFERENCES