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Motivation Graphical Models Results Summary

Why combine multiple datasets?

• Data for the social and health sciences typically come from
observational studies

• Due to the complex nature of the research question, a single
data set may not provide sufficient information for valid inference

• Some data sources, such as routinely collected administrative
data, have a limited number of variables for a large population

• Others, such as surveys or cohort studies, contain detailed
information on a small sample of individuals

• Problems such as bias and small sample size can be mitigated
by combining multiple sources of data
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Case study:
water disinfection by-products and low birth weight

Objective: to estimate the association between trihalomethane (THM)
concentrations, a by-product of chlorine water disinfection potentially
harmful for reproductive outcomes, and risk of full term low
birthweight (<2.5kg).

• Use information on births between 2000 and 2001 in North West
England, serviced by the United Utilities Water Company

• Link birth records to estimated trihalomethane water
concentrations using
• residence at birth
• a model to estimate THM concentration from the water company

monitored samples

• First analysis in Molitor et al (2009)



Motivation Graphical Models Results Summary

The primary data: HES
• 8969 birth records were obtained from the Hospital Episode

Statistics (HES) data base

• Advantage:
• captures information on all hospital births in the population under

study⇒ increased power, fully representative

• Disadvantage:
• contains only limited information on mother and infant

characteristics which impact birth weight⇒ increased bias

• HES contains data on
• mother’s age
• baby gender

• gestational age
• an index of deprivation

• But no data on other characteristics which impact birth weight
• maternal smoking • ethnicity
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A naive analysis using HES data only

• denote low birthweight by Y (binary indicator)

• fit a logistic regression model using the
• exposure of interest, X=THM
• measured confounders,

C={mother’s age, baby gender, deprivation index}

• ignore the unmeasured confounders,
U={maternal smoking, ethnicity}

Naive Analysis Model

Yi ∼ Bernoulli(pi)

logit(pi) = β0 + βX Xi + βT
CC i
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Analysis results using HES data only (n=8969)
no adjustment for mother’s smoking and ethnicity status

Odds ratio (95% interval estimate)
Trihalomethanes
> 60µg/L 1.39 (1.10,1.76)
Mother’s age
≤ 25 1.14 (0.86,1.52)
25− 29? 1
30− 34 0.81 (0.57,1.15)
≥ 35 1.10 (0.73,1.65)

Male baby 0.76 (0.60,0.96)
Deprivation index 1.37 (1.20,1.56)

? Reference group

Biased from unmeasured confounders?



Motivation Graphical Models Results Summary

The supplementary data: MCS
• The Millennium Cohort Study (MCS)

• contains survey information on mothers and infants born during
2000-2001

• includes detailed information on ethnicity and smoking
• is a stratified sample (advantaged/disadvantage/ethnic minority)

• For our study region, 824 cohort births can be matched to the
hospital data (HES)

MCS Analysis Model

Yi ∼ Bernoulli(pi)

logit(pi) = αs(i) + βX Xi + βT
CC i + βT

UU i

include stratum specific
intercepts, αs(i)



Motivation Graphical Models Results Summary

The supplementary data: MCS
• The Millennium Cohort Study (MCS)

• contains survey information on mothers and infants born during
2000-2001

• includes detailed information on ethnicity and smoking
• is a stratified sample (advantaged/disadvantage/ethnic minority)

• For our study region, 824 cohort births can be matched to the
hospital data (HES)

MCS Analysis Model

Yi ∼ Bernoulli(pi)

logit(pi) = αs(i) + βX Xi + βT
CC i + βT

UU i

include stratum specific
intercepts, αs(i)



Motivation Graphical Models Results Summary

The supplementary data: MCS
• The Millennium Cohort Study (MCS)

• contains survey information on mothers and infants born during
2000-2001

• includes detailed information on ethnicity and smoking
• is a stratified sample (advantaged/disadvantage/ethnic minority)

• For our study region, 824 cohort births can be matched to the
hospital data (HES)

MCS Analysis Model

Yi ∼ Bernoulli(pi)

logit(pi) = αs(i) + βX Xi + βT
CC i + βT

UU i

include stratum specific
intercepts, αs(i)

add
U={smoking, ethnicity}



Motivation Graphical Models Results Summary

Analysis results using MCS data only (n=824)
Odds ratio (95% interval estimate)

HES only MCS only MCS only
(excludes U) (excludes U) (includes U)

Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 2.06 (0.85,4.98) 1.87 (0.76, 4.62)
Mother’s age

≤ 25 1.14 (0.86,1.52) 0.65 (0.23,1.79) 0.57 (0.20, 1.61)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.13 (0.02,1.11) 0.13 (0.02, 1.11)
≥ 35 1.10 (0.73,1.65) 1.57 (0.49,5.08) 1.82 (0.55, 5.99)

Male baby 0.76 (0.60,0.96) 0.59 (0.25,1.43) 0.62 (0.25, 1.49)
Deprivation index 1.37 (1.20,1.56) 1.54 (0.78,3.02) 1.44 (0.73, 2.85)
Smoking 3.39 (1.26, 9.12)
Non-white ethnicity 2.66 (0.69,10.31)

? Reference group

Lacks power to detect an association
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Analysis results using MCS data only (n=824)
Odds ratio (95% interval estimate)

HES only MCS only MCS only
(excludes U) (excludes U) (includes U)

Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 2.06 (0.85,4.98) 1.87 (0.76, 4.62)
Mother’s age

≤ 25 1.14 (0.86,1.52) 0.65 (0.23,1.79) 0.57 (0.20, 1.61)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.13 (0.02,1.11) 0.13 (0.02, 1.11)
≥ 35 1.10 (0.73,1.65) 1.57 (0.49,5.08) 1.82 (0.55, 5.99)

Male baby 0.76 (0.60,0.96) 0.59 (0.25,1.43) 0.62 (0.25, 1.49)
Deprivation index 1.37 (1.20,1.56) 1.54 (0.78,3.02) 1.44 (0.73, 2.85)
Smoking 3.39 (1.26, 9.12)
Non-white ethnicity 2.66 (0.69,10.31)

? Reference group

Some evidence of confounding
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Combining the HES and MCS data

• The objective is to estimate the association between X and Y
while controlling for (C,U)

• Combining HES and MCS data
• U becomes a vector of partially measured confounders
• all the observed values of U come from the MCS
• converts the missing confounder problem into a missing data

problem

• Our modelling strategy is to build a joint model containing
• an analysis sub-model (to answer question of interest)
• an imputation sub-model (to impute missing U)

We will now look at how Bayesian graphical models
can help with this process



Motivation Graphical Models Results Summary

Combining the HES and MCS data

• The objective is to estimate the association between X and Y
while controlling for (C,U)

• Combining HES and MCS data
• U becomes a vector of partially measured confounders
• all the observed values of U come from the MCS
• converts the missing confounder problem into a missing data

problem

• Our modelling strategy is to build a joint model containing
• an analysis sub-model (to answer question of interest)
• an imputation sub-model (to impute missing U)

We will now look at how Bayesian graphical models
can help with this process



Motivation Graphical Models Results Summary

Outline

Motivation
Why?
Case study

Graphical Models
Introduction to graphical models
Graphical model for application

Results



Motivation Graphical Models Results Summary

Use of diagrams
Diagrams can be used to visually convey some aspect of a statistical
model, for example
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What is a graphical model?
• Diagrams can be used to provide a pictorial representation of

• the assumed relationships between variables
• some of the features of the model structure

• Graphical models are formal diagrams that provide a powerful
tool for building and communicating complex statistical models

• Formally, a graph, G, consists of
• finite set of nodes N
• set of links L, consisting of ordered pairs of distinct elements of N

• G cannot have multiple links or loops

Example: N = {X ,Y};

X Y X Y X Y

!
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Introducing the Directed Acyclic Graph

• A Directed Acyclic Graph (DAG) is a particular type of graphical
model which contains
• only directed links
• no cycles

Example: N = {X ,Y ,C};

X Y

C

X Y

C

X Y

C

!
undirected link cycle
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Introducing the Directed Acyclic Graph

• A Directed Acyclic Graph (DAG) is a particular type of graphical
model which contains
• only directed links
• no cycles
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Motivation Graphical Models Results Summary

How to represent a statistical model using a DAG

• Each element of the statistical model (variables, parameters,
etc.) is represented by a node

• The assumed relationships between these elements are
represented by links

• The direction of the links reflects the dependence implied by the
equations

• However, the arrows have no intrinsic meaning - they should
NOT be interpreted as meaning causal inference unless extra
assumptions are made

We now provide examples using our application
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DAG for analysis sub-model

Naive Analysis Model
Yi ∼ Bernoulli(pi)

logit(pi) = β0 + βX Xi + βT
CC i

nodes = {β,Xi ,C i ,Yi ,pi}
links = {(pi ,Yi), (β,pi), (Xi ,pi), (C i ,pi)}
circular nodes denote random variables
square nodes denote constant quantities
probabilistic links indicated by solid
arrows ("∼")
deterministic links indicated by dashed
arrows ("=")
repeated structure indicated by a
rectangle, "plate"

individual i

β

Xi

C i pi

Yi

β

pi

Yi

Xi

C i

individual i

β

Xi

C i pi

Yi
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DAG for analysis sub-model

Naive Analysis Model
Yi ∼ Bernoulli(pi)

logit(pi) = β0 + βX Xi + βT
CC i

nodes = {β,Xi ,C i ,Yi ,pi}
links = {(pi ,Yi), (β,pi), (Xi ,pi), (C i ,pi)}

Analysis sub-model
Yi ∼ Bernoulli(pi)

logit(pi) = β0 + βX Xi + βT
CC i+βT

UU i

N = {β,Xi ,C i ,U i ,Yi ,pi}
L = {(pi ,Yi ), (β,pi ), (Xi ,pi ), (C i ,pi ), (U i ,pi )}
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Accounting for sampling bias

Now turning to the imputation sub-model

• The supplementary data (MCS) is not a random sample from the
primary data (HES)

• The MCS cohort sampling was stratified in order to oversample
low socio-economic and ethnic categories

• To account for the sampling bias, include the stratum in the
imputation model as stratum specific intercepts, αs(i)
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Imputation sub-model

• Missing values of U (smoking and ethnicity) imputed using latent
variables, U?

• Allows for correlation between U

• Multivariate probit model is defined as follows:

U?
i ∼ MVN(µi ,Σ)

µi = αs(i) + γX Xi + γT
C C i

Uij = I(U?
ij > 0), j = 1,2

U?
i =

(
U?

i1
U?

i2

)
, µi =

(
µi1
µi2

)
, Σ =

(
1 κ
κ 1

)
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DAG for imputation sub-model

Imputation sub-model
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µi2
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) individual i
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DAG for joint model
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DAG for joint model
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The power of graphical models

• DAGs show how sub-models fit together to form an overall model

• But, there is far more to a DAG than visual representation

• DAGs encode conditional independence statements, which
• allow a joint distribution to be decomposed into a product of

conditional distributions (factorisation theorem)
• is very useful for implementing Markov chain Monte Carlo

(MCMC) methods for Bayesian inference (e.g. exploited by
WinBUGS software)

• ensures joint model is consistent
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Comparison with conventional Multiple Imputation
by Chained Equations (MICE)

• Specify a separate conditional distribution for each variable with
missing data: U1 = smoking; U2 = ethnicity

• No longer uses latent variables

MICE imputation model
U1i ∼ Bernoulli(qi)

logit(qi) = θs(i) + λX Xi + λT
CC i + λUU2i + λY Yi

U2i ∼ Bernoulli(ri)

logit(ri) = φs(i) + δX Xi + δT
CC i + δUU1i + δY Yi

include other U include response

How can we represent this model graphically?
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Graphical representation for MICE approach
U1i ∼ Bernoulli(qi)

logit(qi) = θs(i) + λX Xi + λT
CC i + λUU2i + λY Yi

U2i ∼ Bernoulli(ri)

logit(ri) = φs(i) + δX Xi + δT
CC i + δUU1i + δY Yi
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It is not even a graphical model
We iterate between 2 parts of imputation model, then fit analysis model
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Comparison of results
Odds ratio (95% interval estimate)

HES only MCS only HES+MCS
Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 1.87 (0.76, 4.62) 1.17 (0.88,1.53)
Mother’s age

≤ 25 1.14 (0.86,1.52) 0.57 (0.20, 1.61) 1.02 (0.71,1.38)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.13 (0.02, 1.11) 0.85 (0.57,1.21)
≥ 35 1.10 (0.73,1.65) 1.82 (0.55, 5.99) 1.43 (0.88,2.21)

Male baby 0.76 (0.60,0.96) 0.62 (0.25, 1.49) 0.76 (0.59,0.97)
Deprivation index 1.37 (1.20,1.56) 1.44 (0.73, 2.85) 1.19 (1.01,1.38)
Smoking 3.39 (1.26, 9.12) 3.91 (1.35,9.92)
Non-white ethnicity 2.66 (0.69,10.31) 3.56 (1.75,6.82)

? Reference group

Accounting for missing confounders has reduced OR of THM
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Comparison of results II
Odds ratio (95% interval estimate)

HES only HES+MCS HES+MCS
(joint model) (MICE: 5 imputations)

Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 1.17 (0.88,1.53) 1.22 (0.91, 1.62)
Mother’s age

≤ 25 1.14 (0.86,1.52) 1.02 (0.71,1.38) 0.98 (0.69, 1.38)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.85 (0.57,1.21) 0.84 (0.58, 1.22)
≥ 35 1.10 (0.73,1.65) 1.43 (0.88,2.21) 1.32 (0.86, 2.03)

Male baby 0.76 (0.60,0.96) 0.76 (0.59,0.97) 0.73 (0.58, 0.93)
Deprivation index 1.37 (1.20,1.56) 1.19 (1.01,1.38) 1.23 (1.05, 1.44)
Smoking 3.91 (1.35,9.92) 4.01 (1.32,12.15)
Non-white ethnicity 3.56 (1.75,6.82) 2.73 (1.83, 4.09)

? Reference group

MICE also reduces OR of THM, but greater uncertainty
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Concluding remarks

• Bayesian graphical models are a powerful and flexible tool for
building realistic models for complex problems

• Bayesian graphical models
• allow complex models to be built from smaller comprehensible

pieces
• allow formal combining of multiple data sources
• result in principled inference
• ensure all sources of uncertainty are automatically propagated
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Further Information

• Coming soon:
• paper on comparisons of different imputation strategies

see BIAS web site (www.bias-project.org.uk)
• introduction to graphical models training materials

see LEMMA multilevel modelling on-line learning course
(www.cmm.bristol.ac.uk/research/Lemma)

I Molitor, N.-T., Best, N., Jackson, C., and Richardson, S. (2009).
Using Bayesian graphical models to model biases in observational studies and to combine
multiple data sources: Application to low birth-weight and water disinfection by-products.
Journal of the Royal Statistical Society, Series A (Statistics in Society), 172, (3), 615–37.
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