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Background

• The study of the influence of environmental risk factors on
health is typically based on observational data

• Due to the nature of the research question, existing
environmental contrasts (e.g. related to air pollution, water
quality, ...) are commonly exploited in designs that link
environmental measures with routinely collected
administrative data

• Such data sources will typically have a limited number of
variables for a large population, and might miss important
confounders

• Exposure effect estimates will be biased without proper
adjustment for confounders



The Problem of Unmeasured Confounding

Background:
• Environmental studies using large administrative

databases and registries are commonly faced with
confounding from unmeasured background variables

Possible solutions to adjust for unmeasured confounders:
• A: Source of prior information about unmeasured

confounding?
• Fully elicited versus use of additional data that contains

more detailed information
• B: Possible analysis strategies?

• Sensitivity analysis
• Use of Bayesian hierarchical models to build a joint analysis

of all data sources
• Model-based versus semi-parametric



Information About Unmeasured Confounders
Use of Supplementary (enriched) Datasets

• We consider the situation where
• Confounders are identified
• Information about the unmeasured confounders may be

available from additional datasets (e.g. surveys or cohort
samples)

• We distinguish between the primary data versus the
supplementary (enriched) data, which provide information
about unmeasured confounders

• Analysis involves synthesis of multiple sources of empirical
evidence

• This will require exchangeability assumptions ....
• Bayesian graphical models can be useful...



Case study: Water Disinfection By-Products and Risk
of Low Birthweight

• Objective: To estimate the association between
trihalomethane (THM) concentrations, a by-product of
chlorine water disinfection potentially harmful for
reproductive outcomes, and risk of full term low birthweight
(<2.5kg)(Toledano, 2005).

• Information was collected for 8969 births between 2000
and 2001 in North West England, serviced by the United
Utilities Water Company.

• Birth records obtained from the Hospital Episode Statistics
(HES) data base were linked to estimated trihalomethane
water concentrations using residence at birth and a model
to estimate THM concentration from the water company
monitored samples.

• First analysis in Molitor et al (2009)



The Primary Data: HES

• The primary data have the advantage of capturing
information on all hospital births in the population under
study.
→ Increased power, fully representative

• However, they contain only limited information on the
mother and infant characteristics which impact birth weight.
→ Increased bias

• They contain data on mother’s age, baby gender,
gestational age and an index of deprivation, but no data on
on maternal smoking or ethnicity.
→ How to account for these?



Sources of Supplementary (enriched) Data

• The Millennium Cohort Study (MCS) contains survey
information (stratified sample) on mothers and infants born
during 2000-2001.

• Cohort births can be matched to the hospital data
• Contains detailed information on ethnicity, smoking, and

other covariates, such as alcohol consumption, education,
BMI.

• We combine information from the survey data with the
hospital data using Bayesian hierarchical models.
→ treat unmeasured confounders as ‘missing data’



Naive Analysis Results: Primary data (n=8969)
No adjustment for mother’s smoking and ethnicity status

Odds ratio (95% interval estimate)
NAIVE

Trihalomethanes
> 60µg/L 1.39 (1.10,1.76)
Mother’s age

≤ 25 1.14 (0.86,1.52)
25− 29? 1
30− 34 0.81 (0.57,1.15)
≥ 35 1.10 (0.73,1.65)

Male baby 0.76 (0.60,0.96)
Deprivation index 1.37 (1.20,1.56)

? Reference group

−→ Biased from unmeasured confounding?



Analysis of Supplementary MCS data only (n=824)

Odds ratio (95% interval estimate)
MCS data MCS data

Trihalomethanes
> 60µg/L 2.06 (0.85,4.98) 1.87 (0.76, 4.62)
Mother’s age

≤ 25 0.65 (0.23,1.79) 0.57 (0.20, 1.61)
25− 29? 1 1
30− 34 0.13 (0.02,1.11) 0.13 (0.02, 1.11)
≥ 35 1.57 (0.49,5.08) 1.82 (0.55, 5.99)

Male baby 0.59 (0.25,1.43) 0.62 (0.25, 1.49)
Deprivation index 1.54 (0.78,3.02) 1.44 (0.73, 2.85)
Smoking 3.39 (1.26, 9.12)
Non-white ethnicity 2.66 (0.69,10.31)

? Reference group



Overall Objectives

• Building models that can link various sources of data
containing different sets of covariates

• to fit a common regression model
• and to account adequately for uncertainty arising from

missing or partially observed confounders in large data
bases

• Investigating alternative formulations of imputation and
adjustment for unknown confounders



Bayesian hierarchical models (BHM)

• Bayesian graphical models provide a coherent way to
connect local sub-models based on different datasets into
a global unified analysis.

• BHM allow propagation of information between the model
components following the graph

• In the case of missing confounders, several decomposition
of the marginal likelihood can be used, as well as different
imputation strategies

• Lead to different ways for information propagation or
feedback between the model components

• Modularity helps our understanding of assumptions made
when adjusting for missing confounders



Adjustment for Multiple Unmeasured Confounders
Variables and Notation

Introducing some notation:
• Let Y denote an outcome, e.g. low birthweight
• Let X denote the exposure of interest, e.g. THM
• Let C denote a vector of measured confounders, e.g.

mother’s age, baby gender, deprivation
• Let U denote a vector of partially measured confounders,

e.g. smoking, ethnicity. Note that covariates in U are
identified but might be missing.

• The objective is to estimate the association between X and
Y while controlling for (C, U)



Adjustment for Multiple Unmeasured Confounders
Modelling U as a Latent Variable

• Usual approach (1): Model P(Y |X , C) as

P(Y |X , C) =

∫
P(Y |X , C, U)P(U|X , C)dU

This strategy requires modelling distributional assumptions
about U given (X , C).

• Alternative approach (2):

P(Y , X |C) =

∫
P(Y |X , C, U)P(X |U, C)P(U|C)dU,

This follows propensity score ideas for assessing the
‘causal’ effect of X on Y .



Adjustment for Multiple Unmeasured Confounders
Modelling P(U | X , C) – Approach (1)

• Outcome model:

Logit[P(Y = 1|X , C, U)] = α + βX X + ξT
CC + ΨT

UU

• Imputation model: Multivariate Probit for P(U | X , C)

U? ∼ MVN(µ,Σ)

µ = γ0 + γX X + γC
T C

U∗ =

(
U∗

1
U∗

2

)
, µ =

(
µ1
µ2

)
, Σ =

(
1 κ
κ 1

)
Uj = I(U∗

j > 0), j = 1, 2



A graphical representation of the fully Bayesian model
• Joint estimation in primary and supplementary data
• The supplementary data informs the imputation model
• The uncertainty on U is propagated coherently
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Exchangeability assumptions
Accounting for sampling bias

• It is often the case that the supplementary data is not a
random sample from the primary data

• Assumptions of exchangeability that underline the BHM
model synthesis will not hold

• Need to include additional modelling of the sampling of
supplementary data to render both sources of data
exchangeable

• In our case study, the MCS cohort sampling was stratified
in order to oversample in the UK low socio-economic
categories



Accounting for sampling bias in MCS cohort

• Each outcome Yi in the MCS cohort is associated with a
stratum Si as well as a sampling weight.

• We have implemented two approaches to account for the
stratified sampling

• Include the stratum S in the imputation model equation:

P(U | X , C) −→ P(U | X , C, S)

• Perform weighted imputation, i.e. replace Σ by

Σi = wi

(
1 κ
κ 1

)
=

(
wi wiκ

wiκ wi

)
where wi = 1

weighti



Comparison of naive and fully Bayesian analysis

Odds ratio (95% interval estimate)
NAIVE Fully Bayesian Fully Bayesian

(stratum adjusted) (weight adjusted)
Trihalomethanes
> 60µg/L 1.39 (1.10,1.76) 1.17 (0.88,1.53) 1.20 (0.87,1.59)
Mother’s age

≤ 25 1.14 (0.86,1.52) 1.02 (0.71,1.38) 0.99 (0.71,1.35)
25− 29? 1 1 1
30− 34 0.81 (0.57,1.15) 0.85 (0.57,1.21) 0.85 (0.57,1.20)
≥ 35 1.10 (0.73,1.65) 1.43 (0.88,2.21) 1.40 (0.86,2.16)

Male baby 0.76 (0.60,0.96) 0.76 (0.59,0.97) 0.76 (0.58,0.97)
Deprivation index 1.37 (1.20,1.56) 1.19 (1.01,1.38) 1.27 (1.10,1.47)
Smoking 3.91 (1.35,9.92) 3.97 (1.35,9.53)
Non-white ethnicity 3.56 (1.75,6.82) 4.11 (1.23,9.74)

? Reference group

Accounting for missing confounders has reduced OR of THM



Alternative imputation strategies
Approximations to approach (1)

• Many imputation strategies for missing data do not use a
fully Bayesian formulation but a variety of two-stage
procedures

• Can be useful when full joint analysis difficult, but some
bias can be expected

• In a ‘Feedforward’ strategy, perform successively
• P(U | X , C), then
• P(Y | X , C, U)
• This can be thought of as cutting feedback from Y to U

(and implemented using e.g. the cut-function in Winbugs)
• Alternatively, modify the sampling distribution of U to

include Y to perform Bayesian multiple imputation
• P(U | X , C, Y ), then
• P(Y | X , C, U)



Comparison of full Bayes with alternative strategies

Odds ratio (95% interval estimate)
Fully Bayesian Feedforward only Feedforward only

(no response) (with response)
Trihalomethanes
> 60µg/L 1.20 (0.87,1.59) 1.38 (1.06,1.78) 1.28 (0.77,2.03)
Mother’s age

≤ 25 0.99 (0.71,1.35) 1.14 (0.85,1.51) 0.98 (0.66,1.40)
25− 29? 1 1 1
30− 34 0.85 (0.57,1.20) 0.82 (0.57,1.15) 0.86 (0.55,1.29)
≥ 35 1.40 (0.86,2.16) 1.13 (0.73,1.66) 1.45 (0.84,2.35)

Male baby 0.76 (0.58,0.97) 0.76 (0.59,0.97) 0.77 (0.53,1.07)
Deprivation index 1.27 (1.10,1.47) 1.37 (1.20,1.56) 1.28 (1.10,1.50)
Smoking 3.97 (1.35,9.53) 1.10 (0.79,1.47) 4.83 (1.94,10.10)
Non-white ethnicity 4.11 (1.23,9.74) 1.14 (0.65,1.78) 3.41 (0.63,9.15)

? Reference group

Simple Feedforward provides inadequate adjustment.
Including Y is beneficial but some bias seems to remain.



Adjustement for multiple confounders through
Bayesian propensity score

Approach (2)

• In this approach we model the conditional density
P(Y , X |C, U) using a pair of equations:

Logit[P(Y = 1|X , C, U)] = α + βX + ξT C + Ψ̃T g{Z (U)}T

Logit[P(X = 1|C, U)] = γ0 + γT C + γ̃T U

where the scalar quantity Z (U) = γ̃T U is called the
conditional propensity score.

• One can show that there is no unmeasured confounding of
the Y − X association conditional on C, Z (U).

• In general, the quantity g{Z (U)} is a semi-parametric
linear predictor with regression coefficients Ψ̃. Its link to Y
has to be modelled flexibly, e.g using natural splines.



A graphical representation of role of the propensity
score

• We include the scalar summary Z (U) in the outcome
model

   Parameters

Outcome Model

X

Y C

γ
~

γ

Z(U)

U



Bayesian propensity score with missing data

• Recall:

P(Y , X |C) =

∫
P(Y |X , C, U)P(X |U, C)P(U|C)dU,

• To complete specification, require a model for P(U|C):
• Assume U and C marginally independent and use the

empirical distribution of U from the supplementary data.
• This gives a model for P(Y , X |C) = E{P(Y , U, X |C)}

• We may approximate:

P(Y , X |C) ≈ 1
m

m∑
j=1

P(Y |X , C, Uj)P(X |Uj , C).

for j = 1, . . . , m in the Supplementary data
[Weighting can be included in the summation to account
for the stratified sampling]



Contrasting propensity score conditioning with
imputation

• A major benefit of this approach is that it can easily extend
when dim(U)>2, whereas a multivariate probit imputation
model will become difficult to implement with a high
dimensional U

• The Us are not imputed but their empirical distribution in
the supplementary data is used

• As before, a joint model of the primary and supplementary
data is used

⇒ Uncertainty in estimation of the coefficient of the
propensity score on the supplementary data is propagated
into the primary analysis

• Note that effects of other covariates on Y will not
necessarily be estimated without bias if they are correlated
with U.



Comparison of full Bayes imputation with Bayesian
propensity score adjustment

Odds ratio (95% interval estimate)
Bayesian propensity Fully Bayesian Feedforward only

score adjustment no response
Trihalomethanes
> 60µg/L 1.21 (0.91,1.60) 1.20 (0.87,1.59) 1.38 (1.06,1.78)
Mother’s age

≤ 25 1.14 (0.86,1.52) 0.99 (0.71,1.35) 1.14 (0.85,1.51)
25− 29? 1 1 1
30− 34 0.80 (0.58,1.14) 0.85 (0.57,1.20) 0.82 (0.57,1.15)
≥ 35 1.11 (0.74,1.67) 1.40 (0.86,2.16) 1.13 (0.73,1.66)

Male baby 0.76 (0.60,0.95) 0.76 (0.58,0.97) 0.76 (0.59,0.97)
Deprivation index 1.35 (1.19,1.55) 1.27 (1.10,1.47) 1.37 (1.20,1.56)
Smoking 3.97 (1.35,9.53) 1.10 (0.79,1.47)
Non-white ethnicity 4.11 (1.23,9.74) 1.14 (0.65,1.78)

? Reference group

Results for THM are very similar between full Bayes and propensity
score
Effect of mother’s age is different (correlated to smoking and
ethnicity)



Implementation of Bayesian propensity score
adjustment with an extended set of confounders

Smoking, ethnicity + Education, lone parent, alcohol consumption, BMI

Odds ratio (95% interval estimate)
Bayesian propensity score adjustment

2 missing confounders 6 missing confounders
Trihalomethanes
> 60µg/L 1.21 (0.91,1.60) 1.23 (0.92,1.60)
Mother’s age

≤ 25 1.14 (0.86,1.52) 1.13 (0.85,1.53)
25− 29? 1 1
30− 34 0.80 (0.58,1.14) 0.80 (0.56,1.15)
≥ 35 1.11 (0.74,1.67) 1.11 (0.73,1.64)

Male baby 0.76 (0.60,0.95) 0.75 (0.59,0.95)
Deprivation score 1.35 (1.19,1.55) 1.35 (1.19,1.53)

? Reference group



Adjustment for Multiple Unmeasured Confounders
Summary

• Exposure effect estimate is driven towards zero once the
important confounding effects of mother’s smoking and
ethnicity are taken into account

• The Bayesian propensity score approach can effectively
adjust the effect of X for multiple unmeasured confounders

• We found very good concordance between the two
approaches for the X − Y relationship

• The confounding effect of U (smoking and ethnicity) on the
C − Y relationship (mother’s age, deprivation) is only
captured adequately by the fully Bayesian imputation

• Cutting feedback creates some bias, including the
response in the imputation model partially mitigates this.



Conclusion

• Adjustment for unmeasured confounding in environmental
studies is feasible through the use of additional data
sources (e.g. surveys, cohorts, validation subgroup ...)

• Bayesian methods can be flexibly adapted to synthesize
information across of range of additional data sources, e.g.
can incorporate additional sources of data such as
area-level census variables in the imputation model

• One precaution is that we must be careful to study
exchangeability assumptions between data sets and
account for any sampling weights or stratification in the
imputation model

• Among the methods available, propensity score presents a
computationally feasible alternative when faced with many
unmeasured confounders.
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