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Abstract

Recent years have witnessed new innovation in Bayesian techniques to adjust for unmeasured

confounding. A challenge with existing methods is that the user is often required to elicit

prior distributions for high dimensional parameters that model competing bias scenarios. This

can render the methods unwieldy. In this paper we propose a novel methodology to adjust

for unmeasured confounding that derives default priors for bias parameters for observational

studies with binary covariates. The confounding effects of measured and unmeasured variables

are treated as exchangeable within a Bayesian framework. We model the joint distribution of

covariates using a loglinear model with pairwise interaction terms. Hierarchical priors constrain

the magnitude and direction of bias parameters. An appealing property of the method is that

the conditional distribution of the unmeasured confounder follows a logistic model, giving a

simple equivalence with previously proposed methods. We apply the method in a data example

from pharmacoepidemiology and explore the impact of different priors for bias parameters on

the analysis results.

Keywords: bias; observational studies; Bayesian statistics, pharmacoepidemiology

Running title: Bayesian Sensitivity Analysis
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1. Introduction

1.1 Unmeasured Confounding in Pharmacoepidemiology

Bias from unmeasured confounding figures prominently in pharmacoepidemiology, which is

concerned with improving our understanding of the effectiveness and safety of medications.

A typical pharmacoepidemiology study compares outcome response rates in patients who were

prescribed a medication with those that were not. Study findings are often biased without careful

adjustment for the factors that influence prescribing. Unfortunately, control of confounding

is notoriously difficult because medication prescribing is intimately connected to the disease

process that determines the study outcome. The myriad of patient characteristics that influence

prescribing can act as powerful confounders and bias effect estimates in a manner that is difficult

to predict. Epidemiologists call this confounding by indication because the confounders are the

clinical indications for treatment [1].

In this paper, we illustrate the problem of unmeasured confounding using the data example

of McCandless, Gustafson and Levy [2,3]. The authors conducted a retrospective cohort study

to estimate the effect of beta blocker therapy on mortality in heart failure patients living in

British Columbia. We have healthcare administrative data for 6969 persons discharged from

hospital in 1999 and 2000 after treatment for heart failure. We followed them for one year

and 1755 died. Interest lies on the association between beta blocker therapy and mortality,

but the data only provide basic information on the many possible confounders. A total of 21

covariates are available in the data, including patient characteristics, disease indicator variables

and prescribing of cardiovascular therapies. See Table 1 for a complete listing.

Let X and Y denote binary variables modeling the treatment and outcome variables respec-

tively. We set X equal one if the patient was dispensed a beta blocker within thirty days of

hospital discharge, and zero otherwise. Similarly, we let Y denote an indicator variable for death

within one year of hospital discharge. We let C = (C1, . . . , Cp) denote the p = 21 dimensional

vector of covariates listed in Table 1. In pharmacoepidemiological studies of cardiovascular ther-

3



apies, interest centers on confounding induced by the various patient illnesses. The vector C

includes q = 9 disease indicator variables measured at baseline including cerebrovascular disease

(CVD), chronic obstructive pulmonary disorder (COPD), hyponatremia (HYPNAT), metastatic

disorder (MTSTD), renal disease (MSRD), ventricular arrhythmia (VENTRAR), liver disease

(MLD), cancer (CAN), and cardiogenic shock (CARS).

To estimate the association between beta blocker therapy and mortality while adjusting

for confounding, we fit a logistic regression of Y on X and C . The results are presented in

the first column of Table 1 under the heading “Naive Analysis”. The table displays regression

coefficients, which are log odds ratios, with 95% interval estimates. The regression coefficient for

the treatment effect X is estimated as -0.32 with 95% interval estimates (-0.48, -0.16), suggesting

that beta blocker therapy reduces mortality. The corresponding odds ratio exp(−0.32) = 0.72

agrees closely with estimates reported from randomized trials of beta blockers and heart failure.

In a scientific review of meta-analyses of randomized trials, Foody, Farrell and Krumholz [4],

found that beta blocker use is associated with a consistent 30% reduction in mortality compared

to placebo.

Nonetheless, there are concerns about unmeasured confounding. The problem is that the

probability of being prescribed a beta blocker is influenced by severity of heart disease in the

patient, which in turn affects risk of death. This analysis uses healthcare administrative data

and it is unclear whether or not we can adequately measure and adjust for severity of heart dis-

ease. The data contain no detailed clinical information on the factors that influence prescribing,

which are recorded on medical charts. For example, one unmeasured confounder is the class

of heart failure. This is an ordinal variable with four categories that indicates the severity of

heart failure. Another unmeasured confounder is ejection fraction, which is a measure of heart

function. Both of these variables are important predictors of mortality and treatment (Foody

et al., 2002). They can either increase or decrease the probability of receiving a beta blocker,

depending on the preferences of the prescribing physician. See Glynn et al. [5] for review of
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how cardiovascular therapies are prescribed in North America.

1.2 Bayesian Sensitivity Analysis for Unmeasured Confounding and the Chal-

lenges of Prior Elicitation for Bias Parameters

A typical sensitivity analysis for unmeasured confounding posits the existence of a unmea-

sured binary variable U which confounds the association between X and Y . Paralleling exist-

ing modelling frameworks (e.g. [2,3,6-9]), we model the probability density P (Y, U |X, C ) =

P (Y |X, C , U)P (U |X, C ) where

logit[P (Y = 1|X, C , U)] = β0 + βXYX + βCY
T C + βUYU (1)

logit[P (U = 1|X, C )] = γU + γXUX + γCU
T C . (2)

See Table 2 for a detailed explanation of the variables and parameters. Equation (1) includes U

as a missing covariate in the regression model for the outcome. Equation (2) characterizes the

distribution of the missing confounder. The quantity βXY is the parameter of primary interest

and is the causal log odds ratio for the effect of X on Y conditional on (C , U). Provided that

all models are correctly specified and there are no additional unmeasured confounders, then

the parameter βXY has a causal interpretation. The quantities βUY , γU , γXU and γCU are bias

parameters because they determine the magnitude of unmeasured confounding. The parameter

βUY governs the association between U and Y , conditional on (X, C ), while the parameters γXU

and γ CU captures the associations between U and (X, C ). The quantity exp(γU)/(1+exp(γU))

is the prevalence of U = 1 when X = 0 and C1, . . . , C21 = 0. See Table 2 for details.

The variable U is completely unmeasured. Consequently, the data provide no information

about the relationship between U and the measured variables Y , X and C , and the model

is nonidentifiable. But nonidentifiability does not preclude Bayesian model fitting if additional

sources of information are incorporated. Recent years have witnessed the development of numer-

ous techniques for Bayesian adjustment for unmeasured or partially measured confounders. See

for example [2,3,9-11]. A Bayesian strategy would start by assigning proper prior distributions
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to model parameters that translate beliefs about the magnitude and direction of confounding

by U . Bayes Theorem provides a mechanism for model fitting which synthesizes the data with

prior information about bias. We study the posterior distribution for the treatment effect βXY

integrating over the unmeasured confounder U . Posterior credible intervals for the treatment

effect account for uncertainty in the amount of bias from unmeasured confounding in addition

to random error.

A difficulty with Bayesian sensitivity analysis is eliciting prior distributions for the bias

parameters. In particular, the quantities γU , γXU , γCU consist of p + 2 different parameters

that characterize how U is distributed within levels of X and C . In many applications, it is

burdensome to obtain reasonable prior guesses for γ CU , which describes the association between

C and U given X. An additional problem with using equations (1) and (2) for sensitivity

analysis is that there are many combinations of bias parameters that are equally plausible. This

can make it difficult to display results without presenting many tables.

To mitigate this problem, virtually all sensitivity analysis techniques assume that the un-

measured confounder is independent of measured confounders, conditional on treatment. Math-

ematically, we write U ⊥⊥ C |X, where “⊥⊥” denotes conditional independence. See [1-3,6,8,9]

for examples and [1,12-14] for discussion. In equations (1) and (2), this assumption forces

γCU = 0 , where 0 is a zero vector of length p + 1, and then explores sensitivity for the

remaining bias parameters βUY , γXU and γU .

VanderWeele [12] and Hernán and Robins [13] argue that it is unrealistic to assume that

U ⊥⊥ C |X . Furthermore, epidemiologists argue that such assumptions give inferences from

sensitivity analysis that are too pessimistic [1,14]. In a simulation study, Fewell et al. [14]

demonstrate that high correlations between measured and unmeasured confounders tends to

reduce bias from unmeasured confounding. Intuitively, the reason is because adjusting for mea-

sured variables may control for unmeasured variables because they are correlated with one

another. This reasoning suggests that forcing γCU = 0 for convenience may actually exaggerate
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the sensitivity of the analysis results to unmeasured confounding.

1.3 Correlations Between Measured and Unmeasured Confounders in the Beta

Blocker Data

Returning to the beta blocker example, we attempt to elicit judgments about plausible values

for the bias parameters βUY , γU , γXU and γCU . Table 3 describes the confounding induced

by the q = 9 disease indicator variables listed in Table 1. In Section A we list the conditional

log odds ratios for the association between each variable and mortality by copying and pasting

from the Naive analysis column of Table 1. Section B describe the pairwise conditional asso-

ciations among the variables X and the q = 9 disease indicator variables. In Section B, we

fit a loglinear model by maximum likelihood to the 2 × 2 × . . . × 2 contingency table of cell

counts over all combinations of X and the q = 9 binary disease indicator variables that are

included in C = (C1, . . . , C21). The regression model includes 10 main effects and all
(
10
2

)
= 45

pairwise interactions. Section B contains point estimates and standard errors of coefficients of

the interaction terms in the loglinear model. These coefficients correspond to conditional log

odds ratios for pairwise associations between variables [15]. Elements denoted “NA” indicate

terms that were dropped from the model due to sparsity in order to obtain a valid maximum

likelihood estimator. Section C of Table 3 gives the prevalences of the disease variables.

Table 3 suggests that the disease indicator variables are confounders for the effect of X on

Y , and furthermore, that they are correlated with one another. Most of the variables show

associations with X and Y (Section A). Furthermore, evidence from the literature indicates

that they are predictors of mortality in heart failure patients and they influence prescribing of

cardiovascular therapies [5,16]. Therefore they induce confounding. But the disease variables are

also correlated with one another. In Section B of Table 3, most of the log odds ratios are greater

than zero. Figure 1 plots the log odds ratios. The sample mean is equal to 0.71, which gives

an average odds ratio of exp(0.71)=2.05. This suggests that in the beta blocker data, patients
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who have one disease are also likely to have other diseases. In other words, the confounders are

correlated with one another.

The missing confounder U is a binary indicator of the severity of heart disease, such as

ejection fraction or class of heart failure. Both of these quantities are measures of heart function.

In formulating judgments about U , it is possible that U is correlated with C . Vassan et al.

[17] studied ejection fraction in heart failure patients and showed that patients with low ejection

fraction are more likely to have diabetes, hypertension, high blood pressure and other chronic

illnesses. This suggests that adjustment for C in the Naive analysis of Table 1 may also control

for confounding from U . Therefore, if we do a sensitivity analysis assuming that γC = 0 (i.e.

assuming U ⊥⊥ C |X) then this may exagerate the bias from U .

Thus we are faced with a conundrum: One the one hand it seems unrealistic and possibly

harmful to assume that γC = 0 in sensitivity analysis. But on the other hand it is not clear

how to assign a prior for γC because it is a p-dimensional vector and there is only limited

information available about U .

1.4 Plan of the Paper

One way to elicit priors for the bias parameters is to assume that the confounding effects of

measured and unmeasured confounders are exchangeable in a Bayesian analysis. In other words,

to assume that the confounding induced by U is similar in magnitude to the confounding induced

by C . The assumption of exchangeability is a strong one, however it is has been used previously

in epidemiology to form qualitative judgments about unmeasured confounding. For example, in

a 2002 review paper on confounding by indication, Joffe [18] writes that “... one can learn about

unmeasured confounders and confounding from measured factors. The argument is sometimes

advanced that if adjustment for known covariates fails to change the measure of effect, there

must be little residual confounding.... When control for measured factors reveals confounding,

it is then more likely that there is residual confounding.” This logic rests on the assumption
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that the measured and unmeasured confounders are similar. If the investigator collects enough

covariate information on the patients in the study, then this can be used to characterize the bias

that would be produced from a confounder that was missing. Other examples of this reasoning

from pharmacoepidemiology are described by Schneeweiss [1].

McCandless et al. [3] and Gustafson et al. [19] describe Bayesian methods that assume

exchangeability in the confounding effects of measured and unmeasured confounders. In the

paper of McCandless et al. [3], the authors analyze the beta blocker data, but they ignore

the bias parameter γCU altogether because of the difficulties of prior elicitation. Gustafson

et al. [19] consider the specific case where all of the measured covariates are continuous and

are assumed to have a multivariate Gaussian distribution. Their approach involves estimating

the covariance matrix of the covariates and then using it to construct a prior distribution for

bias parameters. However, the method of Gustafson et al. [19] cannot be used with binary

covariates, as is the case with the beta blocker data.

In this article, we propose a new method for that accommodates observational studies with

binary covariates. We model the joint distribution of (X, C , U) using a loglinear model with

pairwise interactions. Hierarchical priors borrow information from C in order to learn about

bias from U . The method has the appealing property that conditioning on (X, C ) yields a

logistic model for unmeasured confounding that is identical to that of McCandless et al. [2,3]

and Lin et al. [8]. Section 2 describes the method including the model, prior distributions and

posterior computation using Markov chain Monte Carlo (MCMC). The exchangeability assump-

tion is a strong one, and we discuss the plausibility and generality of our method in Section 2.2.

In Section 3, we apply the method to the beta blocker data. A key objective of this article is

to investigate the impact of the prevailing approach to sensitivity analysis which assumes zero

correlation between measured and unmeasured confounders. We study the results when using

degenerate zero mass priors that force γCU = 0. Following the logic of Schneeweiss [1] and

Fewell et al. [14], we illustrate that if U and C are highly correlated, then confounding from U
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tends to diminish. In the beta blocker data, setting γCU = 0 for convenience gives conclusions

that are too pessimistic. Section 4 concludes with a discussion.

2. Bayesian Adjustment for Unmeasured Confounding

2.1 Model

We model the joint probability density P (Y,X, C , U) = P (Y |X, C , U)P (X, C , U) as

logit[Pr(Y = 1|X, C , U)] = β0 + βXYX + β TCY C + βUY U (3)

P (X, C , U) =
1

Q(γX , γC , γU , γXU , γCU , γCX , γC⊕C )
×

exp
{
γXX + γC

T C + γUU+

γXUXU + γCU
T C U + γCX

T CX + γC⊕C
T (C ⊕ C )

}
. (4)

Equation (3) is identical to equation (1) and models the log odds of the outcome as a function of

X, C and U . Equation (4) is a loglinear model for the joint distribution of (X, C , U) with main

effects and pairwise interactions [15]. The denominator Q(γX , γC , γU , γXU , γCU , γCX , γC⊕C )

is the constant of normalization and is a summation of the numerator of equation (4) over the

support of the binary (U,X, C ), which is a set with 2p+2 elements.

See Table 2 for a description of variables and parameters. The quantities γX , γC , γU are

the main effects of (X,U, C ) in the loglinear model, whereas γXU , γCU , γCX and γC⊕C

govern the interaction terms. The quantity C ⊕ C denotes the vector of length
(
p
2

)
of pairwise

products among the p components of C = (C1, . . . , Cp). In other words,

C ⊕ C = (C1C2, C1C3 , . . . , C1Cp,

C2C3, C2C4, . . . , C2Cp,

Cp−1Cp).

The parameter γC⊕C is a vector of regression coefficients for the interaction terms C ⊕ C ,

and it capture the pairwise conditional associations between components of C .

There is a well-known connection between logistic and loglinear models through conditioning

[15]. The parameters γXU and γCU are conditional log odds ratios for the association between
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(X, C ) and U . If we take P (X, C , U) from equation (4) and condition on (X, C ), then

P (U |X, C ) obeys equation (2). We have

logit[P (U = 1|X, C )] = log
[
P (U = 1|X, C )
P (U = 0|X, C )

]
= log

[
P (U = 1, X, C )
P (U = 0, X, C )

]
= log

[
exp

{
γXX + γC

T C + γU+

γXUX + γCU
T C + γCX

T CX + γC⊕C
T (C ⊕ C )

}
/

exp
{
γXX + γC

T C + γCX
T CX + γC⊕C

T (C ⊕ C )
}]
.

= γU + γXUX + γCU
T C .

This gives an appealing equivalence between our proposed model and previously proposed mod-

els for unmeasured confounding given by McCandless et al. [2,3], Lin et al. [8]. See also the

model of Rosenbaum and Rubin [6].

2.2 Prior Distributions

Suppose that θ1, θ2, . . . , θJ are a collection of J unknown parameters. In Bayesian analysis, we

say that θ1, θ2, . . . , θJ are exchangeable in their joint distribution if P (θ1, θ2, . . . , θJ) is invariant

to the permutation of the indices (1, . . . , J) [20]. An exchangeable prior distribution is plausible

if, based on the available information, we are unable to distinguish one parameter from another.

Gelman et al. [20] writes that “In practice, ignorance implies exchangeability. Generally, the less

we know about a problem, the more confidently we can make claims about of exchangeability”.

Now suppose that θ1, θ2, . . . , θJ are exchangeable. Then following standard principles of

Bayesian analysis, we can apply de Finetti’s Theorem, which states that in the limit as J →∞,

then under standard regularity conditions any exchangeable distribution for θ1, θ2, . . . , θJ can be

expressed as an independent and identically distributed mixture of random variables conditional

on some latent variable [20]. In other words, θ1, θ2, . . . , θJ can be modelled as a random sample

from a distribution. Technically, the theorem does not apply for finite J . See Bernardo and

Smith [21] for further discussion of exchangeability.
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Building on the discussion of unmeasured confounding in Section 1, we model the confounding

effects of U and C as exchangeable. For the outcome model, we assign a diffuse normal prior

to β0 with mean zero and variance 103, and we assign

βXY , βCY , βUY
IID∼ N(0, σ2

β) (5)

σ2
β ∼ Inv-χ2

(
10−3, 10−3

)
.

The left hand side (LHS) of equation (5) refers to the individual components of βXY , βCY , βUY ,

and Inv-χ2{.} is an inverse χ2 distribution with degrees of freedom 10−3 and scale parameter

10−3. This choice of hyperparameters gives priors that are proper but uninformative. Equation

(5) models the conditional associations between (X, C , U) and Y as exchangeable. The variance

parameter σ2
β shares information between C and U . If σ2

β is small, then this shrinks the posterior

for the bias parameter βUY towards zero to reflect that there is less unmeasured confounding.

Eliciting a prior for γXU and γCU is more challenging because the parameters describe the

manner in which U is distributed within levels of X and C . As described in Section 2.1, a

well-known property of log linear models is the equivalence with logistic regression that arises

through conditioning. The regression coefficients γXU , γCU , γCX , γC⊕C are conditional log

odds ratios for pairwise associations among the components of (X, C , U). Consequently, we

assign

γXU , γCU , γCX , γC⊕C
IID∼ N(µγ, σ

2
γ) (6)

µγ|σ2
γ ∼ N(0, σ2

γ)

σ2
γ ∼ Inv-χ2

(
10−3, 10−3

)
,

where the LHS of equation (6) refers to the individual components of γXU , γCU , γCX , γC⊕C .

Equation (6) models the pairwise conditional associations among (X, C , U) as exchangeable.

The parameter µγ is the mean log odds ratio and σ2
γ is the variance.

Finally, we assign priors to the remaining model parameters γX , γC and γU , which are the

main effects in the loglinear model of equation (4). The quantity exp(γU)/(1 + exp(γU)) is the
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prevalence of U = 1 when X = 0 and C1, . . . , C21 = 0. We model the quantities γX , γC and γU

as exchangeable and assign

γX , γC , γU
IID∼ N(µ0, σ

2
0) (7)

µ0|σ2
0 ∼ N(0, σ2

0)

σ2
0 ∼ Inv-χ2

(
10−3, 10−3

)
.

2.3 Model Fitting and Computation

Denote the data as data = {(Yi, Xi, C i); i = 1, . . . , n}. If U1, . . . , Un were measured, then

the likelihood function would be

n∏
i=1

P (Yi|Xi, C i, Ui)P (Xi, C i, Ui) =

=
n∏
i=1

[
exp{Yi(β0 + βXYXi + βCY

T C i + βUY Ui)}
1 + exp{β0 + βXYXi + βCY

T C i + βUY Ui}
×

exp{γXXi + γC
T C i + γUUi + γXUXiUi + γCY

T C iUi + γCX
T C iXi + γC

T (C i ⊕ C i)}
Q(γX , γC , γU , γXU , γCU , γCX , γC⊕C )

]
.

Because U is unmeasured, the likelihood for the observed data is obtained by integrating over

the binary U . We obtain

L(β0, βXY , βCY , βUY , γX , γC , γU , γXU , γCU , γCX , γC⊕C ) (8)

=
n∏
i=1

[
P (Yi|Xi, C i, U = 0)P (Xi, C i, U = 0) +

P (Yi|Xi, C i, U = 1)P (Xi, C i, U = 1)
]

=
n∏
i=1

[
exp{Yi(β0 + βXYXi + βCY

T C i)}
1 + exp{β0 + βXYXi + βCY

T C i}
×

exp{γXXi + γC
T C i + γCX

T C iXi + γC⊕C
T (C i ⊕ C i)}

Q(γX , γC , γU , γXU , γCU , γCX , γC⊕C )
+

exp{Yi(β0 + βXYXi + βCY
T C i + βUY )}

1 + exp{β0 + βXYXi + βCY
T C i + βUY }

×

exp{(γX + γXU )Xi + (γC + γCU )T C i + γCX
T C iXi + γC⊕C

T (C i ⊕ C i)}
Q(γX , γC , γU , γXU , γCU , γCX , γC⊕C )

]
.
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The posterior distribution is

P (β0, βXY , βCY , βUY , γX , γC , γU , γXU , γCU , γCX , γC⊕C , σ2
β , µγ , σ

2
γ , µ0, σ

2
0 |data)

∝ L(β0, βXY , βCY , βUY , γX , γC , γU , γXU , γCU , γCX , γC⊕C )×

P (β0)P (βXY , βCY , βUY |σ2
β)P (γXU , γCU , γCX , γC⊕C |µγ , σ2

γ)P (γX , γC , γU |µ0, σ
2
0)× (9)

P (σ2
β)P (µγ |σ2

γ)P (σ2
γ)P (µ0|σ2

0)P (σ2
0) (10)

where lines (9) and (10) refer to the prior distributions for model parameters.

We sample from the posterior distribution using MCMC and the Metropolis Hastings algo-

rithm [20]. We update sequentially from the conditional densities

[β0, βXY , βCY , βUY |.] [γx, γC , γU |.] [γXU , γCU , γCX , γC⊕C |.]

[σ2
β|.] [µγ, σ

2
γ|.] [µ0, σ

2
0|.],

where “[ |.]” means conditional on the data and remaining model parameters. We update

(β0, βXY , βCY , βUY ), (γx, γC , γU) and (γXU , γCU , γCX , γC⊕C ) using a multivariate random

walk with proposal distributions that are multivariate t-distributed with small degrees of free-

dom and with scale matrix equal to the identity matrix multiplied by a tuning parameter that

is set by trial MCMC runs. Updating σ2
β, (µγ, σ

2
γ) and (µ0, σ

2
0) is straightforward in principle

because they are conditionally conjugate and we can sample from the conditional distributions

directly. See Section 3.1 for further discussion of computation and alternatives.

3. Analysis Results for the Beta Blocker Data

3.1 Full Bayesian Analysis

We fit the model in equations (3) and (4) to the beta blocker data and estimate the association

between X and Y while adjusting for C and exploring sensitivity to the unmeasured confounder

U . In the beta blocker data, we are concerned about confounding from unmeasured indications

of disease. The variable U is a binary measure of the severity of heart disease, such as ejection
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fraction or class of heart failure. For this reason, we fix C to include only the q = 9 disease

indicator variables listed in Table 1 because they are informative about patient illnesses. The

remaining p− q = 21− 9 = 12 covariates are not measures of disease (e.g. age and gender) and

they are included via a separate linear terms in the regression model for the outcome. In other

words, we substitute equation (3) with

logit[Pr(Y = 1|X, C , C̃ , U)] = β0 + βXYX + βCY
T C + βC̃Y

T C̃ + βUYU, (11)

where “. . .+ βC̃Y
T C̃ + . . .′′ refers to the 12 non-disease covariates, denoted C̃ , and we assign

a prior to βC̃Y that is independent normal with mean zero and variance 103. Furthermore, we

keep the model for P (X, C , U) exactly as written in equation (4) and exclude a model for the

distribution of covariates C̃ .

A computational challenge with our method is that sampling from the full set of param-

eters can be difficult because of nonidentifiability. As discussed in [2,3,19], the model for

unmeasured confounding is not identifiable. This means is that different points in the pa-

rameter space give identical likelihood functions for the data. The data only minimally influ-

ence the posterior distribution for the bias parameters βUY , γU , γXU , and γCU , which model

unmeasured confounding. Assigning informative prior distributions can improve computa-

tion, but there is still be very slow MCMC mixing, particularly if the sample size of the

dataset is large. A further computational challenge is that the hierarchical prior distributions

in equations (5), (6) and (7) have heavy tails. If we marginalize over the hyperparameters

(σ2
β, µγ, σ

2
γ, µ0, σ

2
0), then equation (9) assigns a t-distribution prior to each of the parameters in

the sets (βXY , βCY , βUY ),(γXU , γCU , γCX , γC⊕C ), and (γX , γC , γU) [20]. Using prior distri-

butions with heavy tails is problematic when fitting nonidentifiable models because the MCMC

sampler may drift towards infinity.

One pragmatic solution is to speed MCMC convergence is by estimating the hyperparameters

(σ2
β, µµ, σ

2
γ, µ0, σ

2
0) beforehand, and then plugging estimates into the priors in equation (9). This

treats the hyperparameters as fixed and known during MCMC. It replaces t-distributions with
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heavy tailed normals improving convergence. Furthermore, it reduces the dimension of the

parameter space during MCMC, so that fewer parameters need to be updated at each iteration.

However, a disadvantage of this approach is that it ignores uncertainty in the hyperparameters.

This may give interval estimates for model parameters that are too narrow.

To illustrate, we calculate point estimates for the hyperparameters using Table 3. The

quantity σβ is the standard deviation of βXY , βCY , βUY . We estimate this quantity as the

sample standard deviation of the log odds ratios in Section A of Table 3, which is equal to

σ̂β = 0.57. To estimate the hyperparameters µγ and σ2
γ, we compute the sample mean µ̂γ = 0.71

and sample standard deviation σ̂γ = 0.93 of the log odds ratios in Section B of Table 3 (See also

Figure 1). To estimate µ0 and σ0 we use Section C of Table 3. First, we compute the logits of

prevalences of {X = 1}, {C1 = 1}, {C2 = 1}, . . . , {Cq = 1}. So for example, the prevalence of

COPD is 310/6969 = 0.044, and the logit of the prevalence is log (0.044/(1− 0.044)) = −3.06.

Similarly, the logit of the prevalence of cancer (CAN) is −3.96. We then compute the sample

mean µ̂0 = −3.86 and the sample standard deviation σ̂0 = 1.22 of the logits.

The point estimates (σ̂2
β, µ̂γ, σ̂

2
γ, µ̂0, σ̂

2
0) are substituted into the priors in equation (9) so that

updating of the hyperparameters is not required during MCMC. We run a single MCMC chain of

length 1000000 after 100000 burn-in iterations. Sampler convergence is assessed using separate

simulation runs with overdispersed starting values and the diagnostics tools included in the R

package CODA [22].

The results are given in the second column of Table 1. The column has the heading

“U 6⊥⊥ C |X” in order to indicate that the components of γCU are modelled as exchangeable

with the components of (γXC , γCX , γC⊕C ) in equation (6), and therefore, that the analysis

does not assume that γCU = 0 . The log odds ratio for the beta blocker effect parameter

βXY is -0.31 with 95% credible interval (-0.64, 0.07). This point estimate is nearly identical to

that obtain from the NAIVE analysis. But the interval estimate is wider because the Bayesian

analysis acknowledges uncertainty from unmeasured confounding. The prior distributions in
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equation (5) assumes that the bias parameter βUY has a prior mean zero and standard deviation

σ̂β = 0.57. In other words, the sensitivity analysis assumes that U is associated with Y , given

(X,C), and this association may either increase or decrease the probability of Y . Because the

prior is symmetric at zero, this means that the estimated value for βXY is similar to that of the

Naive analysis, but the interval estimate is wider. Similar results are reported by McCandless

et al. [2,3].

3.2 Assessing Prior Sensitivity for γCU

Our modelling framework gives the opportunity to study the role of γCU in sensitivity

analysis for unmeasured confounding. One issue is assessing the impact of the usual assumption

that γCU = 0. Recall from Section 1.2 that most sensitivity analysis techniques assume that

measured and unmeasured confounders are uncorrelated (i.e. U ⊥⊥ C |X) in order to reduce

the burden of prior elicitation.

To study the effect of this assumption, we redo the Bayesian analysis in exactly the same

way as Section 3.1, but change the prior in equation (6) to be

γCU = 0 (12)

γXU , γCX , γC⊕C
IID∼ N{µ̂γ, σ̂2

γ},

where µ̂γ = 0.71 and σ̂γ = 0.93. This sets each component γCU equal to zero and guarantees

that U ⊥⊥ C |X. However, it permits the other three bias parameters βUY , γUX and γU to be

non-zero. Thus using the prior in equation (12) instead of (6) allows U to be an unmeasured

confounder for the effect of X and Y , despite the fact that U ⊥⊥ C |X.

The results are presented in the third column of Table 1 under the heading “U ⊥⊥ C |X”. As

intuition suggests, assuming that γCU = 0 increases the posterior uncertainty about unmea-

sured confounding in the beta blocker data. The credible interval for the beta blocker effect in

the third column (U ⊥⊥ C |X) is nearly 15% wider than in the middle column where U 6⊥⊥ C |X.

We have 95% interval estimates (-0.66, 0.15) versus (-0.64, 0.07). Both Bayesian analyses ac-
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knowledge uncertainty from unmeasured confounding, but only the exchangeable analysis allows

the possibility that U and C are correlated. The magnitude of this correlation is driven by the

hyperparameter estimates µ̂γ = 0.71 and σ̂γ = 0.93, which in turn are estimated from the joint

distribution of X and C .

To illustrate the prior sensitivity more clearly, we repeat the analysis while toying with fixed

values for γCU . Figure 2 illustrates what happens to the posterior distribution of βXY when

we set γCU equal to 0 versus 1 . . . versus 5. The quantities 0 , 1 , . . . , 5 denote vectors of

length p + 1. For example, 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). When γCU = 5 then this

means that the odds ratios for the conditional association between U and each of component

C is equal to exp(5) = 148, which corresponds to roughly perfect correlation between C and

U . In Figure 2, the grey shaded region indicates the width and positioning of the Naive interval

estimate for βXY , which is (-0.48, -0.16). Additionally, each of the interval estimates in the

figure is an interval estimate for βXY that is calculated by doing a Bayesian sensitivity analysis

with γCU locked at either 0,1, . . . ,5.

The key observation is that when γCU is large, the interval estimates collapse towards the

shaded region and we obtain inferences that are essentially identical to assuming that there is

no unmeasured confounding. If U and C are highly correlated, then this means that regression

adjustment for C eliminates confounding from U , despite the fact that U is unmeasured. This

occurs even though the prior distribution on the bias parameters βUY , γUX and γU are non-zero.

In other words, if an unmeasured confounder U is associated with the treatment and outcome,

then it may nonetheless induce essentially no bias upon adjustment for C , provided that C is

sufficiently correlated with U .

In Figure 2, the interval estimates are shifted slightly towards zero compared to the shaded

region. The reason is because of the informative prior on βXY in equation (5). The prior has

mean zero and variance σ̂β = 0.57, which tends to shrink point estimates for βXY towards the

zero. In contrast, the Naive interval estimate in Table 1 is computed by maximum likelihood,

18



which effectively presumes a flat prior on βXY .

4. Discussion

Recent years have witnessed new innovation in Bayesian techniques to adjust for unmeasured

confounding in observational studies. A challenge is that the user is often required to elicit prior

distributions for high dimensional parameters that model competing bias scenarios. This can

render the methods unwieldy. In this paper, we propose a novel methodology for settings where

the confounding effects of measured and unmeasured variables can be viewed as exchangeable

within a Bayesian framework. Exchangeability captures the intuitive idea put forth by Joffe [18]

that confounding from measured variables may be informative about unmeasured variables. Our

method reduces the burden of prior elicitation in sensitivity analysis because it assigns priors to

bias parameters without requiring that the analyst encode assumptions about each parameter

individually.

Exchangeability is appealing in pharmacoepidemiology where confounding often results from

a collection of homogeneous disease-related variables that influence prescribing. See Schneeweiss

[1] and Joffe [18] for discussion of unmeasured confounding in pharmacoepidemiology. One

example is observational studies of the effects of antidepressant drugs on adverse outcomes

including infertility [23] and suicide [24]. An important confounder is depression, which is

associated with antidepressant use. Because depression is difficult to measure and adjust for, it

can produce a bias that is difficult to predict. However, one could argue that in typical scenarios

the confounding induced by depression is indistinguishable, a priori, from the confounding of

other disease-related variables that influence antidepressant use, such as cancer, alcohol abuse,

sleep disorders, injury or other mental illness [24].

The assumption of exchangeability of measured and unmeasured confounders is a strong

one. However it is only contingent on making judgments about the labelling of the indices of

the parameters in the prior distribution (See Section 2.2). An exchangeable prior is plausible
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for a set of parameters if, based on available information, we are unable to distinguish one

parameter for another. For the beta blocker data, the unmeasured confounder U is either

ejection fraction or class of heart failure, both of which are measures of the severity of heart

disease. The confounding from U is poorly understood, and there is only limited information

available in the literature to characterize the dependence between U and C (see for example

[17]). A priori, we have no reason to believe that the confounding from U is any different from

the confounding from the q = 9 disease indicator variables.

An advantage of our method is that it does not make the usual sensitivity analysis assump-

tion that U ⊥⊥ C |X (see [1-3,6,8,9,12-14] for examples and discussion). We use a loglinear

model for the joint distribution of (X, C , U), and assign a hierarchical prior distribution to

the bias parameter γCU , which models the dependence between the measured and unmeasured

confounders, conditional on X. In Section 3, we show that when γCU is non-zero then this

reduces the uncertainty from unmeasured confounding. In the beta blocker data, the convention

of forcing γCU = 0 for convenience gives results that are too pessimistic.

An important limitation of our method is that we substitute point estimates for the hyper-

parameters into the prior distribution in order to improve MCMC computation (See Section

3.1). In our experience, this substantially reduces computational time. However, it also ignores

uncertainty in the hyperparameter estimates and may give interval estimates that are too nar-

row. This will be important if the number of measured confounders p is small. In this setting,

it is difficult to characterize the patters of confounding in the dataset, and the uncertainty in

hyperparameter estimates may be large. Nonetheless, pharmacoepidemiological studies often

utilize healthcare administrative data with large sample sizes and rich covariate information on

study participants.
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