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Abstract
Selection bias can affect odds ratio estimation in particular in case-control
studies. Approaches to discovering and adjusting for selection bias have
been proposed in the literature using graphical and heuristic tools as well
as more complex statistical methods. The approach we propose is based on
a survey weighting method termed Bayesian post-stratification and follows
from the conditional independences that characterise selection bias. We use
our approach to perform a selection bias sensitivity analysis of odds ratios
by using ancillary data sources that describe the target case-control popu-
lation to re-weight the parameter estimates obtained from the study. The
method is tested on two case-control studies, the first investigating the asso-
ciation between exposure to electro-magnetic fields and acute lymphoblastic
leukaemia and the second investigating the association between occupational
exposure to hairspray and a minor congenital malformation called hypospa-
dias. In both case-control studies, the odds ratios were only moderately
sensitive to selection bias.

Keywords: Selection bias, post-stratification, Bayesian, conditional inde-
pendence, case-control studies
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1 Introduction

Selection bias (SB) can present a serious problem for valid odds ratio (OR)
estimation in case-control studies as demonstrated in Mezei and Kheifhets(2006)1

and Geneletti et al.(2009).2 These are especially sensitive to SB as the sam-
pling mechanism depends on the case/control status of the participants and
participation probabilities are generally hard to estimate. SB comes about
when the exposure under investigation is associated with the selection mech-
anism. As we typically have limited information on the distribution of the
exposure other than from the study itself, we are unable to estimate the
dependence between the exposure and the selection and can therefore not
adjust for SB. In order to overcome this problem, we propose to introduce
a set of variables B such that first, B separates the exposure from the se-
lection, and second, such that the distribution of B can be estimated from
sources of data external to the study. In so doing we shift the SB from
the exposure, whose distribution cannot be estimated without bias from the
study, to B, whose distribution is estimated from data external to the study
and thus potentially unbiased. By using different sources of data to estimate
the distribution of B we can investigate the sensitivity of the OR to different
selection processes. This aspect is the novelty and strength of this approach
as it encourages us to think carefully about the populations of interest and
the sources of bias.

In Section 2 we describe the two case-control studies we use to assess our
method. In Section 3 we derive our estimator and its Bayesian extension
and discuss the sampling assumptions underlying our method. Section 4
covers the sensitivity analysis applied to the case-control studies. We finish
with a discussion in Section 5.

2 Case-control studies

2.1 EMF and Childhood ALL case-control study

Extremely low-frequency electromagnetic fields (EMF) have been designated
as possibly carcinogenic by the International Agency for Research on Can-
cer based on epidemiologic studies in children.3. We consider here a study
investigating the link between EMF exposure from power cables and child-
hood acute lymphoblastic leukaemia (ALL)4 which found little evidence of
an association (OR for ALL of 1.24, 95% confidence interval (0.86,1.79) at
exposures of 0.2µT or greater as compared with less than 0.065µT). In a
later analysis, Hatch et al (2000), 5 suggested that there might be SB due
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Income, race and urban status of EMF-ALL study
Full(%) Partial(%) Full(%) Partial(%)

income race

≤ $20k 134(12) 119(27) white 1031(94) 372(87)
$20k − $39k 381(35) 156(37) black 22(2) 34(8)

> $39k 577(53) 152(36) other 39(4) 21(5)

urban disease

city 733(67) 117(27) case 576(53) 189(44)
rural 359(33) 310(73) control 516(47) 238(56)

Table 1: Table of numbers(percentages) of individuals by partial and full
participant status in the EMF-ALL dataset. There are a total of 1092 (72%)
full and 424 (28%) partial participants

to differential participation rates in different socio-economic strata.
Briefly, cases were contacted by the Children’s Cancer Group and con-

trols were selected by random digit dialling and matched to cases according
to the first eight digits of their phone numbers, age and race. Demographic
details were collected over the telephone. EMF measurements inside the res-
idence of those who had completed the telephone interview were attempted
by technicians blinded to the case/control status. Participants for whom
indoor measurements were made, are termed full participants, whilst those
for whom indoor measurements were not made, either because of refusal or
because the family had moved etc. are termed partial participants.

In our analysis, we concentrate on three socio-economic indicators, race,
annual household income (income) and whether the family lived in a city
or otherwise (urban). These seemed the most important socio-economic
indicators, particularly urban, as individuals living in a city will be exposed
to more EMF via power cables than those living in the countryside.

Table 1 shows the numbers (%) of individuals in the socio-economic
indicator groups by full and partial participant status. Full and partial
participants are significantly different: half of full participants but only one
third of the partial participants are in the highest income bracket, 8% of the
partial sample are black versus only 2% in the full sample and urban dwellers
were twice as likely to be full participants than rural dwellers. Finally, whilst
the cases and controls are spread evenly amongst the full participants, there
is a slightly larger proportion of controls amongst the partial participants.
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If – as is plausible – EMF exposure is associated with the socio-economic
status (SES) of the participants then this can result in SB.

2.2 Hairspray exposure and Hypospadias case-control study

The second application we consider is a case-control study investigating the
association between hypospadias, a minor congenital malformation and oc-
cupational exposure to hairspray6 which has been linked to hypospadias.
Ormond et al (2007) 6 estimated that maternal exposure to hairspray was
associated with increased risk of giving birth to a baby boy with the malfor-
mation (OR = 2.4, 95% confidence interval (1.40,4.17), adjusting for income
and smoking).

The average household income of controls was slightly higher than that of
cases, and the cases included a higher proportion of younger women than the
controls. This gave rise to concerns about SB brought about by differential
enrolment into the study due to SES and maternal age (MA) as both may
be associated with occupational exposure to hairspray.

Women were initially contacted by mail and if they responded were asked
to complete a telephone questionnaire. As with the EMF data, the study
consisted of full and partial participants. The partial participants were those
who had declined to participate in the study but responded to the initial
mailing, whereas the full participants were those who completed telephone
interviews which included relevant confounders.

We obtained a measure of SES, the 1991 Carstairs score (an area-level
deprivation score7), for full and partial participants with post-codes that
could be linked to appropriate wards (for details see on-line supplementary
materials). The Carstairs score was discretised into three categories, high,
medium and low using tertiles.

Table 2 illustrates the differences between the full and partial cases and
controls. While the full cases are evenly distributed amongst the three SES
groups, a lower proportion of the full controls and a higher proportion of
the partial cases and controls are in the lower SES group.

3 Sensitivity analysis for case-control study OR

Selection bias, item non-response bias, drop-out bias, are the same type of
bias arising in different contexts. This bias arises when the sample in the
study is unrepresentative of the target population, i.e. has been sampled dif-
ferentially with respect to some key variables. The most common approach

5



SES and Maternal Age in H-H study
Cases Controls Cases Controls

SES Full(%) Partial(%) Full(%) Partial(%) MA Full (%) Full (%)

high 139(33) 20(17) 161(37) 80(32) <25 yrs 51 (13) 37 (9)
medium 138(33) 40(36) 152(35) 72(30) 25-35 yrs 244 (64) 258 (64)

low 145(34) 52(47) 122(28) 95(38) >35 yrs 83 (22) 111 (27)

Table 2: Table of numbers(percentages) of individuals by full and partial
participant groups for SES in the H-H dataset. Also number(percentages)
of women in 3 age categories (MA). The full participants included those for
whom we had data on the variables of interest, smoking, maternal age, SES
and occupational exposure to hairspray. There are a total of 857 (70%) full
and 360 (30%) partial participants. These are fewer than the 1487 considered
in6 as it was necessary to have a correct postcode for the participants in order
to link it with the bias breaking variable B discussed in Section 3.1.1.

to adjusting for this type of bias – which we term selection bias (SB) – is to
use a weighting procedure.

In case-control studies, cases and controls must be exchangeable with
respect to all variables involved in the association under investigation in
order to obtain valid ORs. This means that they must be sampled from the
same population, e.g., if controls are predominantly office workers and cases
are predominantly factory workers and we are investigating the association
between exposure to a factory chemical and the incidence of a particular
cancer, then we are likely to get invalid results as cases are not exchangeable
with the controls with respect to employment, income etc.

The dependence between the sampling mechanism and the case/control
status makes case-control studies particularly vulnerable to SB: Selection
probabilities tend to differ systematically between cases and controls and
are hard to estimate. This makes it difficult to assess whether the two
groups are exchangeable.

A number of weighting schemes have been proposed to adjust for SB
in epidemiology, mostly based on Horvitz-Thompson (HT) estimators, the
most common being inverse probability weighting.8

3.1 Post-stratification

We focus instead on a survey weighting technique termed post-stratification
(PS). PS involves weighting the parameters of interest such as outcome
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Figure 1: The idea behind the bias breaking variable approach to adjusting
for selection bias.

means and probabilities by the proportion in which the associated explana-
tory variables occur in the population,9 as such it is an extension of direct
standardisation. PS based estimators can be derived from a simple con-
ditional independence argument based on understanding of the SB process
(see Section 3.1.1). This argument also leads to a simple way to investigate
the sensitivity of the OR to different PS weights and the exchangeability
assumptions they embody.

3.1.1 Conditional independence and post-stratification

SB comes about when the exposure under investigation is associated with the
process of selection into a study. This means that estimates of the OR based
only on the individuals for whom data are available for the exposure and
the case/control status, those we termed full participants in our examples,
will be biased. Let W represent the exposure of interest, Y the outcome
and S whether an individual is selected into a study. In terms of conditional
independence10 we say that if W 6⊥⊥S|Y , i.e. W is not independent of S
conditional on Y , then there is SB. If we use directed acyclic graphs (DAGs)
to express selection bias, we see that it is a form of collider bias as in Figure
1a where both W and Y are directly associated with S. 2, 11

The idea underlying our sensitivity analysis is to identify a set of vari-
ables B implicated in the selection process such that conditional on B the
exposure and the selection criteria are no longer directly associated (Figure
1b), i.e. such that:

W ⊥⊥ S|(Y,B). (1)
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This conditional independence also holds if, in addition to B there are con-
founders C, not implicated in the selection process. In fact, it extends to

(W,C) ⊥⊥ S|(Y,B). (2)

with the corresponding DAG given in Figure 1c. Note that these conditions
still hold if B and C are associated. We can use conditional independence
(2) to decompose the probability of exposure W given case/control status,
the components of the OR of interest, as follows:

p(W = 1|Y = y) =
∑
B

∑
C

p(W = 1|Y = y,B,C)︸ ︷︷ ︸
(a)

×

(b)︷ ︸︸ ︷
p(C|Y = y,B)× p(B|Y = y)︸ ︷︷ ︸

(c)

(3)

Equation (3) is an example of a PS equation: (a) is the parameter es-
timate (the B stratum specific probability of exposure given Y ), (b) is the
weight associated with a confounding adjustment and (c) = P (B|Y = y) =
pby is the PS weight.

We can estimate (a) and (b) directly using data from the the full par-
ticipants (i.e. those for whom S = 1) as conditional independence (2) al-
lows us to replace these expressions with p(W = 1|Y = y,B,C, S = 1)
and p(C|Y = y,B, S = 1) respectively. Crucially, we cannot similarly use
p(B|Y = y, S = 1) to estimate pby because B its is not independent of the
selection mechanism. Using only the full participant data will result in a bi-
ased estimate of pby. Instead, we use other data sources to estimate pby and
use these estimates as tools to investigate the OR’s sensitivity to SB. Our
method hinges on being able to find sources of data which provide plausible
estimates of pby in the context under investigation. Identifying sources for
plausible estimates of B is typically possible in epidemiology .2 We refer to
B as the bias breaking variable (BB).

Equation (3) highlights the difference between confounders and SB vari-
ables. While we deal with confounding by adjusting for it using the full
participant data (the equivalent of adding it as a covariate in a regression),
the distribution of the BB variables B needs to be estimated from additional
data.

First we look at estimating (a) and (b) jointly using Bayesian techniques
and then we look at how to estimate pby and conduct the sensitivity analysis.
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3.2 Bayesian post-stratified analysis

Bayesian post-stratification (BPS) has been used in a number of contexts12,9

in the survey literature. Geneletti et al. (2008)2 applied non-Bayesian PS
to the H-H case-control study. We extend both approaches here.

Variances for the adjusted estimates are hard to calculate in closed form,2

however, by using Bayesian Markov Chain Monte Carlo (MCMC) methods,
the variance of the estimators is simply the empirical variance of their poste-
rior sample. Further, MCMC gives us the distribution for the OR enabling
us to investigate any aspect of the distribution.

Typically, in a frequentist analysis ORs are estimated using the maxi-
mum likelihood estimate (MLE) of the prospective logistic regression coeffi-
cient of the exposure, βw in Equation (4).

logit{p(Y = 1|W,B)} = β0 + βwW + βbB + +βcC (4)

A well known result states that the frequentist MLE of βw can be estimated
from the retrospective logistic regression where W and Y are swapped in
Equation (4). However, the aim of inference here are estimates of p(W |Y,B,C)
– (a) from Equation (3) – and these cannot be obtained from Equation (4).

We follow Seaman and Richardson (2001)13 and estimate the vector of
probabilities p(W,B,C|Y = 1) = γ and p(W,B,C|Y = 1) = φ for all
combinations of W ,C and B, using multinomial likelihoods for γ and φ
with Dirichlet priors (see on-line supplementary material). From γ and φ,
we obtain (a) and (b) from Equation (3) by probability manipulations.

The Bayesian approach has two main components: The model for the
probabilities (a) and (b), and the model for pby. We use independent Dirich-
let priors for γ and φ, as more complex, e.g. hierarchical models, made
little difference to the final outcomes. In both studies we used fixed weights
based on the raw frequencies to estimate pby as data were plentiful and a
prior model was not necessary. In other scenarios, data might be sparse or
particular constraints need to be placed on the weights and thus using a
model to estimate the weights could be appropriate.

3.3 Sensitivity to choice of PS weights

To control for SB it is necessary to make cases and controls exchangeable
with respect to variables implicated in the selection mechanism. We cannot
do this directly as we typically cannot estimate selection probabilities. Thus,
we assess the sensitivity of the OR by “wiggling” the distribution of p(B|Y =
y) = pby, by estimating pby from different sources of data that we consider
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representative of the cases and controls as defined in the study protocol.
What data sources result in plausible estimates of pby will depend on the
source of bias and the extent to which the bias affects the cases and controls
in the study – i.e. their exchangeability.

Generally, it will be appropriate to weight the cases and controls dif-
ferently. Intuitively, if we have SB, this is precisely because the case and
control populations are differently affected by this bias and therefore need
to be adjusted for differently.

If we assume that the source of SB, if there is any, is the same for cases
and controls, (as we do in our applications) then we must ask ourselves to
what extent the two groups are affected. If e.g., SES is thought to be a
good candidate for B, then there will often be reasons to suspect that the
control sample has a larger proportion of higher SES individuals than the
case sample as typically, cases will be more motivated to participate in the
study irrespective of their SES. Different case-control studies will however
have different BB variables and context specific reasoning on the extent of
the bias will be necessary.

The sensitivity analysis we propose involves first identifying a suitable
set of variables B satisfying conditional independence (2) and such that
additional data (other than the full participants) are available to estimate
its distribution. Second, for each additional dataset estimating at least one
PS weight. Third, for each PS weight calculating a corresponding adjusted
OR. The final step involves comparing adjusted ORs to assess sensitivity to
choice of weight.

3.4 Sources of data to estimate pby

We consider first what datasets provide sensible estimates of pby and second
which combinations of these estimates, for cases and for controls respectively,
correspond to plausible selection scenarios and reflect our understanding of
the strength of the SB in the two groups.

If the study is population based, it will often be sensible to use census or
similar routinely gathered datasets to estimate PS weights as these will be a
good proxy for the distribution of the BB variables in the controls. Another
common situation is a study having partial participants, i.e. individuals
for whom case/control status and covariate information are available but
for whom exposure information is lacking. In such situations, it is some-
times meaningful to combine partial with full participant data to estimate
combined participant weights. Combining is advisable when a study is well
designed and conducted as the set of eligibility criteria for cases and controls
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in the protocol will be such that those contacted will be representative of
the target cases and controls and thus exchangeable. These will provide us
with valid BB information. Combining full and partial participants is not
meaningful unless the number of partial participants is a considerable per-
centage of the full participants (over 20%) as smaller numbers are unlikely
to change results.

3.4.1 EMF-ALL

Consider the EMF-ALL example. We assume based on arguments in Section
2.1 that B, the set of socio-economic indicators given by {race, income,
urban} is the BB variable for both cases and controls. One source of data
to estimate pyb is the Current Population Survey (CPS), a monthly survey
of about 50,000 households conducted by the Bureau of the Census for the
Bureau of Labor Statistics in the US. This has exhaustive information on
the distribution of B in the nine States of the study.

As this study was well-designed, there is a second source of data to
estimate the distribution of B: the combined full and partial participant
data gathered during the course of the study for which B is known.

The diagram in Figure 2 shows the two sources of data, the combined
full and partial participant data and CPS (external) and the three types of
estimates of pby that can be obtained from these data. In the left-hand sec-
tion, we combine full and partial participants but condition on case/control
status to obtain estimates of pby. We term these the combined full and par-
tial participant weights conditional on case/control status (CPCs and CPCn
respectively). In the middle section of Figure 2 we also combine full and
partial participants but this time marginalise over the case/control status
to obtain an estimate of p(B) = pb rather than p(B|Y ). We term this the
combined full and partial participant weight marginalised over case/control
status (CPM). Finally, we consider only the external CPS data and obtain
another estimate of pb, the external marginal (EM) weight.

We now need to decide which weights should be combined with cases and
which with controls by considering the extent of the bias in the two groups.
Table 3 describes a number of plausible combinations of weights for cases
and controls for the EMF-ALL study. We consider two (CPCs,CPCn) and
(CPM,EM) in more detail here. The (CPCs,CPCn) estimator relies entirely
on combined participant data. The assumption underlying this estimator is
that the individuals contacted during the study following the protocol were
in fact a representative sample of the target case/control population and
were by design exchangeable. If this estimator is very different from the
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pb(y=1)

pb(y=0) pb
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partial
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Figure 2: Diagram showing the data used to estimate pby, (c) in Equation
(3). The expression below each box denotes the quantity that can be esti-
mated using the data represented by that box. We omit C for simplicity.
Below each section is the quantity we can estimate using that data.

frequentist logistic regression estimate that we take as the baseline, then
SB is present. The (CPM,EM) estimator is based on combined participant
data for the cases and external CPS data for the controls. This estimator is
plausible for the controls as they were intended to be representative of the
general population, differing from the cases only in their disease status. It is
a plausible estimator for the cases in this study because the raw proportions
of B amongst the full cases are similar to those for the combined participants
and the larger number of individuals (1519 vs 1092 full) in the combined
group decreases the variance.

3.4.2 Hairspray exposures-Hypospadias

In this case-control study, we have three sources of data to draw from.
The first is the 1991 Carstairs deprivation score (an area level measure of
socio-economic deprivation) for the full and partial participants obtained
from their electoral geographic ward of residence. Using this score we can
estimate CPCs and CPCn as well as CPM weights as in the EMF-ALL
study. As a quarter of the cases and a third of the controls were partial
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Post-stratification weights
cas/con Assumptions and Interpretation

CPCs,CPCn The cases and controls contacted are representative of the target case-
control sample w.r.t B.

CPCs,CPM The distribution of B in the controls is estimated well by the combined
participant data.

CPCs,EM The distribution of B in the controls is estimated well by the CPS data.

CPM,EM The distribution of B in the cases is estimated well by the combined
participant data.

Key

CPCs,CPCn Estimates pby using combined full and partial participant data condi-
tioning on case/control status as shown on LHS of Figure 2.

CPM Estimates pb using combined full and partial participant data marginal-
ising over case/control status as shown in middle of Figure 2.

EM Estimates pb using CPS data external to the study as shown on the RHS
of Figure 2.

Table 3: Table describing the assumptions underlying the plausible weight-
ing schemes for the EMF-ALL study.

participants and these complied with the study protocol, it was appropriate
to use the partial information (see Table 2).

The second source of data is the the study area 1991 census. Using these
data we can estimate the distribution of 1991 Carstairs score for women of
childbearing age (15-55). The census data are external to the study and
thus contains no case/control information, so we use them to estimate an
EM weight. This is analogous to the EMF-ALL EM weight.

The third source of data is the Millennium Cohort Study (MCS) which
can be used to estimate the distribution of maternal age (MA). MA is also
a confounder for the association between hypospadias and hairspray and
was measured in the case-control study. The MCS data provides us with an
additional EM weight.

Similar arguments as those used for the EMF-ALL study can be put
forward when considering what combinations of weights to use for the cases
and controls in the H-H study. However in this study, we consider two rather
than one set of BB variables B, B = SES (as estimated by the Carstairs
score) and B = {SES,MA} where MA represents maternal age.
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Adjusted odds ratios for EMF-ALL study
cas/con Med CI

CPCs,CPCn 1.13 (0.73,1.74)
CPM,EM 1.04 (0.69,1.62)
Frq lg 1.14 (0.77,1.68)

Table 4: Medians and credible/confidence intervals for the odds ratios of
ALL for exposure to EMF (≥ 0.2µT) using (CPCs, CPCn), (CPM, EM)
and logistic regression estimates.

4 Results

4.1 EMF-ALL study

We apply the BPS method to the EMF-ALL study with B = {race, income,
urban} using two different sources of data for the weighting: The combined
data on full and partial participants to estimate CPCs, CPCn and CPM
weights and the CPS data for external weights. For both datasets we use
the multinomial-Dirichlet model described in Section 3.2.

Table 4 shows the medians and credible/confidence intervals for two of
the plausible weightings listed in Table 3 as well as the OR estimates of the
frequentist logistic regressions of the form given by Equation (4). We chose
(CPCs, CPCn) and (CPM, EM) as they represented the highest and lowest
PS weighted estimates. From Table 4 we see that the median of the (CPM,
EM) estimate is shifted towards one with respect to the others.

Although the changes are modest and do not affect the epidemiologic
conclusions of the study, there is evidence of the OR’s sensitivity to differ-
ent PS weights and consequently to different sampling assumptions. In a
situation where the OR is not so clearly covering one, these changes might
lead to a change in the interpretation of the results.

4.2 Occupational hairspray exposure - Hypospadias study

In the H-H study we can consider a number of different data sources and
variables as being potentially involved in the selection process.

First we consider the simplest case where B = SES as measured using
the Carstairs scores from the combined full and partial study data, resulting
in CPCs, CPCn and CPM weights and the census data, resulting in an EM
weight.

14



Keeping the same B = SES we then add smoking Sm as a confounder,
C = Sm.14 In so doing, we assume that smoking is only a confounder and
not a bias breaking variable (i.e. conditional independence (2) holds for
Sm = C). This means that we can use the full participant data to estimate
p(Sm|SES, Y ) and then estimate p(SES|Y ) as detailed above. We then
use Equation (3) to combine the two probabilities, p(Sm|SES, Y ) is (b) and
p(SES|Y ) is (c). This gives us additional weights.

Finally, we assume that B = {SES,MA} where MA is MA and we use
the Millennium Cohort Study (MCS) to estimate p(SES,MA|Y ), keeping
Sm as a confounder as above. See on-line supplementary material for details
on how to incorporate MA. This gives us an additional EM weight.

The variable occupational hairspray exposure takes on three values, 0,1
and 2 representing no exposure, exposure and unemployment respectively.
We focus on the OR of 0 vs 1.

We consider the same multinomial-Dirichlet model which we used for the
EMF data. Table 5 shows the posterior estimates for the PS adjusted OR
of exposure using the (CPCs,CPCn) and (CPM,EM) weights for the three
data sources used to assess the sensitivity of the OR described above. These
were chosen because they had the highest and lowest medians respectively,
however similar trends are true for the other PS weighted estimates.

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

dircasmodel OR for 0 vs 1 for (IC,EM) adjustments

odds ratio

D
en

si
ty

B={SES,MA}, C=smoke (1.61,5.47)
B=SES, C=smoke (1.22,4.22)
SES only (1.51,4.31)

Figure 3: Kernel density plots for the posterior distribution of the PS ad-
justed OR estimates based on three different PS weights.

The results for the PS weighted and logistic regression estimates are
similar across data sources. The frequentist estimates do not change whilst
there is a change of 15 and 9 % for (CPCs,CPCn) and (CPM,EM) respec-
tively. This indicates that some SB is being adjusted for probably due to
differential participation rates in different strata of SES and maternal age.

While the (CPM, EM) estimates appear to increase, the (CPCs, CPCn)
estimates vary across the data sources as shown in Table 5 and Figure 3. In
particular the “B=SES, C=smoke” estimate is slightly lower, this may be
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Adjusted odds ratios for H-H study
cas/con Weighted Un-weighted

CPCs,CPCn Freq LG

Variablesa Med CI Variablesb Med CI

B = SES 2.55 (1.51,4.31) SES 2.62 (1.51,4.53)
B = SES,C = smoke 2.20 (1.22,4.22) SES, smoke 2.62 (1.51,4.54)
B = {SES,MA}, C = smoke 2.94 (1.61,5.47) SES, smoke,MA 2.58 (1.49,4.49)

CPM,EM
B = SES 2.63 (1.56,4.61)
B = SES,C = smoke 2.77 (1.58,5.13)
B = {SES,MA}, C = smoke 2.86 (1.59,5.26)

Table 5: a)Medians and 95% credible intervals for the odds ratios using
(CPCs,CPCn),(CPM,EM) for different data sources, i.e. settings of the bias
breaker B and the confounder C. b) Logistic regression estimates and 95%
confidence intervals for the odds ratio adjusting for SES, then SES and
smoke and finally SES,smoke and MA. In the logistic regression model,
all three variables can be seen as confounder. SES is measured using the
1991 Carstairs tertiles, smoke refers to the mother’s smoking status, MA
refers to maternal age as categorised in Table 2.
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due to some additional imprecision in the PS weights (see on-line supplemen-
tary material for details). The remaining PS weighted estimates resemble
the (CPM, EM).

The PS adjusted estimates do not lead to changes in the epidemiological
conclusions of the study, indicating that the results are robust to the choice
of PS weights.

5 Discussion

In both studies we observe some sensitivity to different models and weights.
However the estimates and the statistical significance of the results does
not change in either study, suggesting that the original study estimates are
robust and unlikely to be affected by substantial SB. In other cases, the
statistical significance of the ORs could change. In particular, studies with
highly variable ORs and large differences between the internal and external
distributions of B will be the least robust.

Our PS based method provides a novel empirically and theoretically
grounded approach to SB sensitivity analysis. The perturbations of the
OR are caused by varying observed distributions of variables thought to be
implicated in the selection. Further, PS weights to adjust for SB follow
in a straightforward manner from the conditional independence structures
that define this bias.2 Our approach can be seen as complementing the bias
parameter approach proposed by Greenland et al. 15, 16 In particular, as the
focus of our work is to adjust for SB, other forms of bias can still be modelled
and taken into account via a bias parameter in the model for the exposure
probability.

Inverse probability weighting (IPW) approaches are useful for adjust-
ing for SB in particular in trials with dependent drop-out17 where selection
probabilities can typically be estimated. However, IPW often involves com-
plex computations and smoothing procedures.18 In contrast, our method is
computationally simple, in particular when the weights are estimated using
raw frequencies. It is thus worth experimenting with our method if external
data can be found before moving on to more complex approaches. BPS can
be easily extended if models are needed to estimate the PS weights, and to
contexts outside case-control studies where SB is present.

When a suitable set of variables B to perform poststratification cannot
be found, sensitivity analysis can be performed by proposing plausible dis-
tributions for B in the same spirit as 15 using prior knowledge to elicit and
constrain these distributions.
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Our method is computationally simple and fast especially with the inde-
pendent multinomial-Dirichlet prior models we considered here as the pos-
terior distributions can be derived analytically. In WinBUGs running these
models took less than a minute on a standard PC.

Finally, BPS is conceptually simple and encourages us to think carefully
about how case and control populations differ; What our target population
is; What the sources of bias are and what variables we can use to assess the
sensitivity of the results to these biases.
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