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Introduction

There are now many simulations of complex social phenomena that have structures or component
processes analogous to biological evolution (see Arifovic 1994, Chattoe 2006a, Dosi et al 1999,
Lomborg 1996, Nelson and Winter 1982, Oliphant 1996, Windrum and Birchenhall 1998 to get a
flavour of the diversity of approach and applications). Clearly the process of biological evolution is
complex and has resulted in the development of complex (and in several cases social) systems.
However biological evolution follows very specific mechanisms and is clearly not strictly isomorphic
with social processes. For a start biological evolution occurs over larger time spans than most social
processes. Further, it is unlikely, as sociobiology (Wilson 1975) and evolutionary psychology (Buss
2004) are sometimes supposed to imply, that the domain of social behaviour will actually prove
reducible to genetics. Thus it is not immediately apparent why evolutionary ideas have had such an
influence upon the modelling of social processes. However simulations of social phenomena have
been strongly influenced by our understanding of biological evolution and this has occurred via two
main routes: through analogies with biological evolution and through computer science approaches.

In the first case, conceptions of evolution have been used as a way of understanding social processes
and then simulations have been made using these conceptions. For example (Nelson and Winter
1982) modelled growth and change in firms using the idea of random variation (new products or
production processes) and selective retention (whether these novelties in fact sustain profitability —
the survival requirement for firms — in an environment defined by what other firms are currently
doing).

In the second case computer science has taken up the ideas of evolution and applied it to
engineering problems. Most importantly in Machine Learning, ideas from biological evolution have
inspired whole families of techniques in what has become known as “Evolutionary Computation”.
The most famous of these techniques are Genetic Algorithms (Holland 1975, Mitchell 1996) and
Genetic Programming (Koza 1992a, 1994) discussed below. These algorithms have then been
applied in social simulations with different degrees of adaption; from using them unchanged as “off
the shelf” plug-ins (for example to model learning processes) to specifying simulation processes that
use the core evolutionary idea but are completely re-engineered for a particular modelling purpose
or domain. There is no a priori reason to suppose that a particular technique from computer science
will be the most appropriate algorithm in a social simulation (including those with a biological
inspiration) as we shall see below, but it certainly presents a wealth of evolutionary ideas and results
that are potentially applicable in some form. Like any theory, the trick is to use good judgement and
a clear specification in applying an algorithm to a particular social domain (Chattoe 1998, 2006b).

What is certainly the case is that biological evolution offers an example of how complex and self-
organised phenomena can emerge from randomness, so it is natural to look to this as a possible
conceptual framework with which to understand social phenomena with similar properties. (In
particular, while it may be reasonable to assume deliberation and rationality in some social contexts,



it is extremely unlikely to apply to all social structures and phenomena. As such, some kind of blind
variation and retention — evolution — is probably the only well defined theoretical alternative.) The
extent to which evolution-like processes are generally applicable to social phenomena is unknown
(largely because this foundational issue has not received much attention to date), but these
processes certainly are a rich source of ideas and it may be that there are some aspects of social
complexity that will prove to be explicable by models thus inspired. It is already the case that many
social simulation models have taken this path and thus have the potential to play a part in helping us
to understand social complexity (even if they only serve as horrible examples).

This chapter looks at some of the most widely used approaches to this kind of modelling, discusses
others, gives examples and critically discusses the field along with areas of potential development.

An Abstract Description of Biological Evolution

We will not provide full details of biological evolution as currently understood in the Neo-Darwinian
synthesis.! Rather we will take from this a generalised model of evolution that will potentially cover
a variety of social processes. This description will then be used to discuss an example from
Evolutionary Game Theory (Vega-Redondo 1996). This will unpack the implications of the abstract
description and demonstrate its generality. This generalisation is a preliminary to discussing
evolutionary simulations of social phenomena based on the abstract description as a framework.

The Four Process Description

The basic components in the biological theory are the genotype (the set of instructions or genome)
and the phenotype (the “body” which the genotype specifies) in which these instructions are
embedded. The phenotype is constructed using “instructions” encoded in the genotype. The
phenotype has various capabilities including reproduction. Maintenance of the phenotype (and the
embedded genotype) requires a number of potentially scarce inputs (food, water). The phenotypic
capabilities include management of inputs and outputs to the organism. Poor adaptation of these
capabilities with respect to either external or internal environment will result in malfunction and
consequent death. The death of a particular phenotype also ends its reproductive activity and
removes the corresponding genotype from the population. Variation occurs by mutation and during
reproduction, giving rise to novel genotypes (and hence subsequent phenotypes) in the resulting
offspring. Genotypic variations are not selected directly by the environment but according to the
overall capabilities of the phenotype. In biology, phenotype alterations cannot be transmitted to the
genotype for physiological reasons but in social systems this “Lamarkian” adjunct to evolution
(which is not, however, adequate to explain change in its own right) is both possible and plausible. In
particular it allows for combinations of evolutionary learning and the social level and deliberate
action at the individual level (Chattoe 2006a).

A full specification of an evolutionary model requires descriptions of the following processes:

1) Generation of phenotypes: A specification of the genotypes and the phenotypes these
correspond to. This may not specify a 1-1 mapping between genotypes and phenotypes but
describe the process by which phenotypes are actually constructed from genotypes. This is
necessary when genotypes cannot be enumerated.

! For details about this see any good textbook on biology (e.g. Dobzhansky et al 1977).



2) Capabilities of the phenotypes: A specification of ways in which phenotypes may use their
capabilities to affect the internal and external environment, including the behaviour and
numbers of other phenotypes. Lamarckian systems include the capability to modify the
genotype using environmental feedback during the lifetime of the phenotype.

3) Mechanisms of reproduction and variation: A specification of the process by which
phenotypes reproduce including possible differences between ancestor and successor
genotypes resulting from reproduction. Reproduction may involve a single ancestor
genotype (parthenogenesis) or a pair (sexual reproduction). In principle, multiple parents
could be modelled if appropriate for particular social domains (like policies decided by
committees) though this approach has not been used so far.

4) Mechanism of selection: A specification of all the processes impinging on the phenotype and
their effects. This is the converse of the second mechanism, the capabilities of one
phenotype form part of the selection process for the others. Some processes, such as
fighting to the death, can be seen as directly selective. However, even indirect processes like
global warming may interact with phenotypic capabilities in ways that affect fitness.

In these process specifications it may be convenient to distinguish (and model separately) the
“environment” as the subset of objects impinging on phenotypes which display no processes of the
first three types. Whether a separate representation of the environment is useful depends on the
process being modelled. At one extreme, a person in a desert is almost exclusively dealing with the
environment. At the other, rats in an otherwise empty cage interact almost entirely with each other.

Obviously, some of these specifications could be extremely complex depending on the system being
modelled. The division into system components is necessarily imprecise but not arbitrary. It is based
on the considerable observed integrity of organisms relative to their environment. (This integrity is
also observed in social “organisms” like firms which have clearly — and often legally — defined
boundaries.) The first and third specifications involve processes internal to the organism while the
second and fourth represent the organisms effect on the external world and the converse.

Of course, social processes, even “evolutionary social processes” are not constrained by the above
specification, for example what most closely corresponds to the genotype might not be separable
from what corresponds to the phenotype. Nevertheless, however, for a very broad class of
evolutionary simulations it will be necessary to implement something very similar to the above four
categories.

Illustrative Example: A Simple Evolutionary Game

Despite the potential complexity of specifying complete models for biological systems, this
description can also be used to clarify and analyse relatively simple evolutionary systems. In this
section we shall provide a description for an evolutionary game. The purpose is not to comment on
Evolutionary Game Theory per se but to show how the description raises issues relevant to our
understanding of evolutionary models.

For each agent, the genotype is one of a set of finite state automata producing a single action in
each period, for example the complete set of one and two-state automata leading to the actions
“Co-operate” and “Defect” in a Prisoner’s Dilemma (see, for example, Lomborg 1996). The action is
compared with the action of a co-player (another agent) and the result is an adjustment to the



“energy level” for each agent depending on the game payoffs and chosen strategies. If agents reach
a certain energy level, they produce an exact copy. (This model dispenses with variation and involves
asexual reproduction.) If the energy level of any agent reaches zero, it dies and is removed from the
environment. Reproduction reduces the energy level considerably. Merely existing also does so but
at a much lower rate.

With some qualifications, this is an example of a complete description discussed in the last section. It
reveals some interesting things about the process of constructing such descriptions.

Firstly, this model involves a very attenuated environment compared to real social systems. Agents
have a single external capability involving one of two actions and thus affecting the energy levels of
their co-players. The effect of these actions is also the only environmental process that impinges on
agents. The model of the environment just consists of mechanisms for deciding when and which
agents will play, administering actions and energy changes, producing copies and removing dead
agents. In real social systems, exogenous events (both social and environmental) are likely to be very
important.

Secondly, the discussion of energy levels still sounds biological but this is simply to make the
interpretation of the example more straightforward in the light of the recent discussion. As | shall
show subsequently, the survival criterion can just as easily be profitability or organisation
membership levels.

Thirdly (and perhaps most importantly) there has been sleight of hand in the description of the
model. | have already described Lamarckism (genotype modification by the phenotype during the
organism’s lifetime) and the construction of the phenotype by the genotype during gestation is a
fundamental part of the evolutionary process. But in this example the genotype is effectively
“reconstructing” the phenotype every time the finite state automaton generates an action. There is
nothing observable about a particular agent, given the description above, except the sequence of
actions they choose. There is no way for an agent to establish that another is actually the same
when it plays D on one occasion and C on another, or that two plays of D in successive periods
actually come from two different agents. In fact, this is the point at which models of social evolution
develop intuitively from the simple description of biological evolution used so far. The capabilities of
social agents (such as consumers, families, churches and firms) include the “senses” that give them
the ability to record actions and reactions in memory. Furthermore, they have mental capabilities
that permit the processing of sense data in various ways, some subset of which we might call
rationality. The simple automata described above are reactive, in that their actions depend in
systematic ways on external stimuli, but they can hardly be said to be rational or reflective in that
their “decision process” involves no choice points, internal representations of the world or
“deliberation”. Such distinctions shelve into the deep waters of defining intelligence, but the
important point is that we can make useful distinctions between different kinds of adaptability
based on the specifications of process we use in our models without compromising the evolutionary
framework we have set up. It is in this way that the complex relationship between selection and
reasoned action may begin to be addressed.

Thus, even in this simple example, one can see not only the general evolutionary structure of the
simulation but also that the conception differs in significant ways from the corresponding biological
process.



Evolutionary Ideas in the Social Sciences
From early on, since the publication of “The Origin of Species” (Darwin 1859), Darwin’s ideas of
evolution have influenced those who have studied social phenomena. In 1884 Gabriel Tarde
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published a paper (Tarde 1884) discussing “natural” and “social” Darwinism. This marked a shift
from looking at the social organisation of individuals to the patterns of social products (fashions,

ideas, tunes, laws and so on). Tarde (1903 p.74) put it like this:

"but self-propagation and not self-organisation is the prime demand of the social as well as of the
vital thing. Organisation is but the means of which propagation, of which generative or imitative
imitation, is the end."

However it was from the latter half of the 20" Century that the full force of the analogy with
biological evolution (as understood in the Neo-Darwinian Synthesis) was felt in the social sciences.
There were those who sought to understand the continuous change in cultural behaviours over long
time-scales in this way, e.g. (Boyd and Richerson 1984, Campbell 1965, Cavalli-Sforza and Feldman
1973, Cloak 1975, Csanyi 1989). Richard Dawkins coined the term 'meme' as an discrete and
identifiable unit of cultural inheritance corresponding to the biological gene (Dawkins 1976, 1982),
an idea which has influence a stream of thinkers including (Costall 1991, Lynch 1996, Dennett 1990,
Heyes and Plotkin 1989, Hull 1982, 1988, Westoby 1994). Another stream of influence has been the
Philosophy of Science via the idea that truth might result from the evolution of competing
hypotheses (Popper 1979), a position known as Evolutionary Epistemology since (Campbell 1974).
The ultimate reflection of the shift described by Tarde above is that the human mind is “merely” the
niche where memes survive (Blackmore 1999) or exploit (as “viruses of the mind” — Dawkins 1993) —
the human brain is programmed by the memes, rather than using them (Dennett 1990). This fits in
with the idea of the Social Intelligence Hypothesis (Kummer et al 1997) that the biological reason the
brain evolved is because it allows specific cultures to develop in groups giving specific survival value
with respect to the ecological niches they inhabit (Reader 1970). All of these ideas hinge on the
importance of imitation (Dautenhahn and Nehaniv 2002), since without this individual memes, ideas
or cultural patterns would be quickly lost.

Evolutionary theories are applied in a wide variety of disciplines. As mentioned above, evolutionary
theories are applied to culture and anthropology, as in the work of Boyd and Richerson, Cavalli-
Sforza and Feldman and Csanyi. The evolution of language can be seen as an analogy to biological
evolution, as described by (Hoenigswald and Wiener 1987). In computer science, Genetic
Programming and Genetic Algorithms (as well as the more rarely used Classifier Systems) are
descendants of the evolutionary view as well, for example in the work of several individuals at the
Santa Fe Institute (Holland 1975, Kauffman 1993). Learning theories of humans, applied to
individuals, groups and society can be tied to evolutionary theory, as shown in the work of Campbell
(1965, 1974). The work of several philosophers of science also shows an evolutionary perspective on
knowledge, as in Popper's (1979) and Kuhn's (1970) work. In addition, these views have impact on
evolutionary epistemology, and are analogical to biological evolution. Evolutionary theories have
been described to account for brain development by Gerald Edelman (1992), and extended to the
msec-to-minutes time scale of thought and action by William Calvin (1996a, 1996b). Evolutionary
theory (and in some cases, explicit modelling) is present in economics, often tied to the
development of technology, as in the work of Nelson and Winter (1992) or to the evolution of
institutions and practices as in the work of Dosi et al (1999), Hodgson (1993) and North (1990).



Sociology too has used evolutionary ideas and simulations to understand the evolution of social
order (Lomborg 1996, Macy 1996), changing populations of organisations (Hannan and Freeman
1993) and the survival of so-called “strict” churches (Chattoe 2006).

Interestingly, however, against these creative approaches must be set forces in particular social
sciences that have slowed or marginalised their adoption. In sociology, the conversion of
functionalism (potentially a form of social evolution) into a virtual religion was followed by a huge
backlash against untestable grand theory which made these ideas virtually beyond the pale for 20
years or so (Chattoe 2002, Runciman 1998). It is quite likely that confused associations with Social
Darwinism, eugenics and even Nazism have not helped the use of biological analogies in social
science from the forties until quite recently. In economics, the focus on deliberate rationality and
well defined equilibria has meant that evolutionary approaches are judged ad hoc unless they can be
reinterpreted to suport the core assumptions of economics. (This can be observed, for example, in
evolutionary approaches to equilibrium selection where the object is not to understand the
dynamics of the system but to support the claim that particular equilibria are robust.) In psychology,
while there seems to be no overt objection to evolutionary approaches, it seems to be the case
(perhaps for historical reasons) that the main interest in these ideas is to explain behaviour using
genetic accounts of cognitive structure rather than using evolutionary analogies.

In subsequent sections, having shown that interest in evolutionary ideas is widespread, we turn to
technical details of various kinds of evolutionary algorithm, their strengths, weaknesses and social
applicability so the reader is able to evaluate their use and consider applications in their own areas
of research interest. We start with the Genetic Algorithm, which is easiest to describe, then move to
Genetic Programming and the (more rarely used but in some sense more satisfactory as an analogy)
Classifier Systems. The final example doesn’t rely directly on the use of an evolutionary algorithm
but clearly attempts to model a social process using a biological analogy.

The Basic Genetic Algorithm

This section describes the basic operation and limitations of the Genetic Algorithm. This leads to a
description of ways in which the Genetic Algorithm can be generalised and a detailed discussion of
one specific way of generalising it (Genetic Programming) in the subsequent section.

What is a Genetic Algorithm?

The Genetic Algorithm is actually a family of programmes developed by John Holland (1975) and his
co-workers at the University of Michigan. The following algorithm describes the structure of a
typical Genetic Algorithm. It is the different ways in which various parts of the algorithm can be
implemented which produces the wide variety of Genetic Algorithms available. Each part of the
algorithm will be discussed in more detail in a subsequent section. For the purposes of illustration,
consider an attempt to solve the notorious Travelling Salesman Problem that involves producing the
shortest tour of a set of cities at known distances visiting each once only (Grefenstette et al 1985).

1) Represent potential solutions to the problem as data structures.

2) Generate a number of these solutions/structures and store them as a composite data
structure called the Solution Pool.

3) Evaluate the “fitness” of each solution in the Solution Pool using a Fitness Function.



4) Make copies of each solution in the Solution Pool, the number of copies depending
positively on its fitness according to a Reproduction Function. These copies are stored in a
second (temporary) composite data structure called the Breeding Pool.

5) Apply Genetic Operators to copies in the Breeding Pool chosen as “parents” and return one
or more of the resulting “offspring” to the Solution Pool, randomly overwriting solutions
which are already there. Repeat this step until some proportion of the Solution Pool has
been replaced.

6) Repeat steps 3, 4 and 5 until the population of the Solution Pool satisfies a Stopping
Condition. One such condition is that the Solution Pool should be within a certain distance of
homogeneity.

There is an obvious parallel between this algorithm and the process of biological evolution that
inspired it. The string representing a solution to a problem corresponds to the genotype and each
element to a gene. The Fitness Function represents the environment that selects whole genotypes
on the basis of their relative performance. The Genetic Operators correspond to the processes
causing genetic variation in biology that allow better genes to propagate while poorer ones are
selected out. This class of Genetic Algorithms has a number of interesting properties (for further
discussion see Goldberg 1989).

1) Itis evolutionary. Genetic Operators combine and modify solutions directly to generate new
ones. Non-evolutionary search algorithms typically generate solutions “from scratch” even if
the location of these solutions is determined by the current location of the search process.
The common Genetic Operators are based on biological processes of variation. Genetic
Operators permit short subsections of parent solutions to be propagated unchanged in their
offspring. These subsections (called schemata) are selected through their effect on the
overall fitness of solutions. Schemata that produce high fitness for the solutions in which
they occur continue to be propagated while those producing lower fitness tend to die out.
(Note that while it is not possible to assign a meaningful fitness to single genes, it is possible
to talk about the relative fitness of whole genotypes differing by one or more genes. By
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extension, this permits talk about successful “combinations” of genes.) The Genetic
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Operators also mix “genetic material” (different solutions in the Breeding Pool) and thus
help to ensure that all the promising areas of the Problem Space are explored continuously.
These ideas clearly resonate with the social production of knowledge, in science for
example.

2) Itis non-local. Each solution is potentially exploring a different area of the Problem Space
although solutions can “cluster” in promising areas to explore them more thoroughly. This
allows for societies to be “smarter” than their members.

3) Itis probabilistic. The Fitness Function ensures that fitter solutions participate in Genetic
Operators more often because they have more copies in the Breeding Pool and are thus
more likely to propagate their useful schemata. However, it sometimes happens that a
solution of low overall fitness contains useful schemata. The probabilistic replacement of
only a proportion of the Solution Pool with new solutions means that a small number of
poor solutions will survive for sufficient generations that these schemata have a good
chance of being incorporated into fitter solutions. This probabilistic approach to survival
(when coupled with non-locality and the use of Genetic Operators) means that the Genetic
Algorithm avoids getting stuck on non-optimal peaks in the Problem Space. Consider a



problem space with two peaks, one higher than the other. A simple hill climbing algorithm, if
it happens to start “near” the lower peak, will climb up it and then be stuck at a non optimal
position. By contrast, there is nothing to prevent the Genetic Operators from producing a
new solution somewhere on the higher peak. Once this happens, there is a possibility of
solutions fitter than those at the top of the lower peak and these will come to dominate the
population. The search process can thus “jump” from one peak to another which most
variants of hill climbing don’t do.

4) Itis implicitly parallel. In contrast with the behaviour of serial search algorithms that operate
on a single best solution and improve it further, the Genetic Algorithm uses a population of
solutions and simultaneously explores the area each occupies in the Problem Space. The
results of these explorations are repeatedly used to modify the direction taken by each
solution. The parallelism arises because the “side effects” of exploring the area surrounding
each solution affect all the other solutions through the functioning of Genetic Operators.
The whole is thus greater than the sum of its parts.

5) Itis highly general. The Genetic Algorithm makes relatively few assumptions about the
Problem Space in advance. Instead, it tries to extract the maximum amount of information
from the process of traversing it. For example, non-evolutionary heuristic search algorithms
use features like the gradient (first differential) which may not be calculable for a highly
irregular Problem Spaces. By contrast, in the Genetic Algorithm all operations take place
directly on a representation of the potential solution. The Fitness Function also evaluates
fitness directly from solutions rather than using derived measures. Although no search
technique escapes the fact that all such techniques exploit some properties of the problem
space they are applied upon, in practice Genetic Algoritms are good at finding acceptable
solutions to hard problems (which, in some cases, defeat other methods), albeit not always
the best solution. Ironically, social evolutionary learning may be better at finding the
solutions to difficult problems than rationality which struggles without high levels of
knowledge about environmental structure.

The Problem Representation and Initial Population

The most important step in developing a Genetic Algorithm also requires the most human ingenuity.
A good representation for solutions to the problem is vital to efficient convergence. Some solutions
have more obvious representations than others do. In the Travelling Salesman Problem, for example,
the obvious representation is an ordered list of numbers representing cities. For example, the
solution (1 4 3 2) involves starting at city 1, then going to city 4 and so on. Once a representation has
been developed, a number of solutions are generated and form the initial population in the Solution
Pool. These solutions can be generated randomly or they may make use of some other (“quick and
dirty?”) algorithm producing better than random fitness. The optimum size of the initial population
depends on the size of the Problem Space. A population of almost any size will ultimately converge.
But the efficiency of the Genetic Algorithm relies on the availability of useful genetic material that
can be propagated and developed by the Genetic Operators. The larger the initial population, the
greater the likelihood that it will already contain schemata of an arbitrary quality. This must be set
against the increased computational cost of manipulating the larger Solution Pool. The initial
population must also be sufficiently large that it covers the Problem Space adequately. One natural
criterion is that any given point in the Problem Space should not be more than a certain “distance”
from some initial solution. A final requirement for a good solution representation is that some



“genes” should not be too much more important to overall fitness than others. Equivalent variations
at different positions should have a broadly similar effect on overall fitness. In the Travelling
Salesman Problem all the positions in the list are equivalent. They all represent cities. The efficiency
of the Genetic Algorithms relies on the exponential propagation of successful schemata and this
efficiency is impaired if schemata differ too much in importance as the system then becomes
“bottlenecked” on certain genes.

The Fitness Function

The Fitness Function is at least as important as the solution representation for the efficiency of the
Genetic Algorithm. It assigns fitness to each solution by reference to the problem that solution is
designed to solve. The main requirement for the Fitness Function is that it must generate a fitness
for any syntactically correct solution. (These are commonly referred to as “legal” solutions.) In the
Travelling Salesman Problem, an obvious Fitness Function satisfying this requirement would be the
reciprocal of the tour length. The reciprocal is used because the definition of the problem involves
finding the shortest tour. Given this goal we should regard shorter tours as fitter. More complicated
problems like constrained optimisation can also be handled using the Fitness Function. One
approach is simply to reject all solutions that do not satisfy the constraints. This involves assigning
them a fitness of 0. However, where solutions satisfying the constraints are sparse, a more efficient
method is to add terms to the Fitness Function reflecting the extent of constraint satisfaction. These
“penalty terms” lower the fitness of solutions that fail to satisfy the constraints but do not
necessarily reduce it to zero.

The Process of Reproduction

Reproduction is sometimes classified as a Genetic Operator in that it takes a number of solutions
(the Solution Pool) and produces a new set (the Breeding Pool). However, it is a Genetic Operator of
a special type in that it uses additional information (the fitness of solutions and the Reproduction
Function) in generating that population. The Reproduction Function links the fitness of individual
solutions and the number of copies they produce. This process mimics the reproductive success of
fitter organisms in biological systems. The number of copies depends on the type of Genetic
Algorithm. Typically the fittest solutions in the Solution Pool may produce two or three copies while
the worst may produce none. In order that potentially useful “genetic material” be retained, it is
important that fitter solutions do not proliferate too rapidly, nor less fit solutions die out too fast.
Despite their low fitness, poor solutions may contain useful schemata that need to be incorporated
into better solutions. Ensuring “adequate” survival for instrumental efficiency is a matter of trial-
and-error and depends on the problem and the type of Genetic Algorithm being used. There are
two main types of reproduction strategies.

In the first, the Holland-Type algorithm (Holland 1975), the copies of each solution make up the
Breeding Pool as described above. The Breeding Pool thus contains more copies of fitter solutions.
There are two main sorts of Reproduction Function. The first is proportional fitness: here the
number of copies produced for each solution is equal to the size of the Solution Pool normalised by
some function according to the “share of fitness” accruing to each particular solution. Fitter
solutions, responsible for a larger share of total fitness, produce more copies. This system is similar
to that used in Replicator Dynamics (Vega-Rendondo 1996): it is performance relative to the average
that determines the number of offspring. The second possibility is rank-based fitness. In this case,
the number of copies depends on fitness rank. For example, the fittest 5 solutions may receive 2



copies each, the least fit receive no copies and all others receive 1. Both types of function have
probabilistic equivalents. Instead of determining the actual number of copies, the function can
determine the probability of drawing each type. The reproduction operator is then applied
repeatedly, drawing from the probability distribution until the Breeding Pool is full. Clearly, this will
still result in a greater proportion of fitter solutions in the Breeding Pool. The Reproduction Function
can be linear or arbitrarily complex. In practice, the “shape” of the Reproduction Function is chosen
on the basis of experience to optimise the performance of the Genetic Algorithm.

The second reproduction strategy, the GENITOR algorithm (Whitley 1989) does not involve a
Breeding Pool. Instead of copying solutions into the Breeding Pool and then copying the results of
Genetic Operators back again, the GENITOR takes parent solutions sequentially from the Solution
Pool, applies Genetic Operators and returns the offspring immediately to the Solution Pool. The
Solution Pool is kept sorted by rank and new solutions are appropriately placed according to fitness.
A new solution either overwrites the solution with fitness nearest to its own or it is inserted into the
Solution Pool so that all solutions with lower fitness move down one place and the solution with the
lowest fitness is removed altogether. The GENITOR algorithm ensures that fitter solutions are more
likely to become parents by using a skewed distribution to select them.

The differences between these strategies are instructive. The GENITOR algorithm is more similar to
the interaction of biological organisms. The parents produce offspring that are introduced into a
population that probably still contains at least one parent. Fitness affects which parents will mate,
rather than generating offspring from all individuals in the Solution Pool. Even the “pecking order”
interpretation of the introduction of offspring seems relatively intelligible. By contrast, the Breeding
Pool in the Holland-Type algorithm seems to be an abstraction with little descriptive plausibility. The
Holland-Type algorithm effectively splits the process of reproduction into two parts: the
proliferation of fitter individuals and the subsequent generation of variation in their offspring. In
biological systems, both processes result from the “same” act of reproduction. Furthermore, the
differential production of offspring emerges from the relative fitness of parents. It is not explicitly
designed into the system. In functional terms, both types of algorithm promote the survival of the
fittest through variation and selective retention. In instrumental terms, one is sometimes more
suitable than the other for a particular Problem Space. In descriptive terms, the GENITOR algorithm
seems more appropriate to biological systems. (It can also be given a more plausible behavioural
interpretation in social contexts.)

The Genetic Operators

There are two main types of Genetic Operator that correspond to the biological phenomena of
recombination and mutation. These are the original Genetic Operators developed by Holland (1975).
Recombination Genetic Operators involve more than one solution and the exchange of genetic
material to produce offspring. The commonest example is the Crossover Operator. Two solutions are
broken at the same randomly selected point (n) and the “head” of each solution is joined to the
“tail” of the other to produce two new solutions. Here a; identifies an ordered set of k genes from
one parent and b; identifies those from another.



Figure 1. The Crossover Operator

One of the two new solutions is then chosen with equal probability as the offspring to be placed in
the Solution Pool.

Mutation Genetic Operators involve a single solution and introduce new genetic possibilities. The
two main sorts of mutation Genetic Operators used in Genetic Algorithms correspond to so called
“large scale” and “point” mutation. In the Mutation Operator (corresponding to point mutation) one
gene is altered to another value from the legal range (selected with equal probability) and shown in
the diagram as h,.
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Figure 2. The Mutation Operator

One commonly used Genetic Operator corresponding to large scale chromosomal mutation is the
Inversion Operator which involves reversing the order of a set of genes between two randomly
selected points (n and m) in the genotype.
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Figure 3. The Inversion Operator

The Inversion Operator provides an opportunity to discuss positional effects in solution
representations although these can arise in all Genetic Operators except point mutation. It is not
problematic to invert (reverse) the order in which a section of a city tour takes place in the Travelling
Salesman Problem. However, there may be problem representations for which we have no reason to
expect that the Inversion Operator will generate solutions that are even syntactically correct let



alone fit. There are two solutions to the production of illegal solutions by Genetic Operators. One is
to use the penalty method. The other is simply to avoid unsuitable Genetic Operators by design.
Positional effects pose particular problems if genes have different meanings, some representing one
sort of object and some another. In this case, inverted solutions are almost certain not to be legal.
This difficulty will be addressed further in the section on developing the Genetic Algorithm.

In biological systems, recombination ensures that the genes of sexually reproduced offspring are
different from those of both parents. Various forms of mutation guarantee that entirely new genetic
possibilities are also being introduced continuously into the gene pool. In the Genetic Algorithm, the
Genetic Operators perform the same function, but the probability with which each is applied has to
be tuned to ensure that useful genetic material can be properly incorporated before it is lost.
Typically the Crossover Operator is applied with a high probability to each solution and the Mutation
Operator with a low probability to each gene leading to a moderate probability of some mutation
occurring in each solution. Other Genetic Operators are applied with intermediate probability.
These probabilities are intended to reflect very approximately the relative importance of each
process in biological systems.

For instrumental uses of the Genetic Algorithm, the setting of probabilities is a matter of experience.
If the probabilities of application are too low, especially for the Mutation Operator, there is a danger
of premature convergence on a local optimum followed by inefficient “mutation only” search. (In
such cases, the advantages of parallel search are lost and the Genetic Algorithm effectively reverts
to undirected serial search.) By contrast, if the probabilities of application are too high, excessive
mixing destroys useful schemata before they can be combined into fit solutions.

There is a wide variety of other Genetic Operators discussed in the literature (Goldberg 1989,
Mitchell 1996), some developed descriptively from biological systems and others designed
instrumentally to work on particular problems. The descriptive use of Genetic Operators in the
example provided here means that although it is important to bear the instrumental examples in
mind, they should not be regarded as definitive. The processes of variation that affect the economic
analogues of genotypes should be established empirically just as they were for biological genes.

Convergence

Because the Genetic Algorithm is a powerful technique, many of the problems it is used to solve are
very hard to tackle by other means. Although it is possible to test the Genetic Algorithm by
comparison with other techniques for simple problems, there is a danger that conclusions about
performance will not scale to more complex cases. One consequence of this is the difficulty of
defining satisfactory conditions for convergence. Provided the Problem Space is suitable, a non-
evolutionary algorithm will find the best solution within a certain time. In the same time, the Genetic
Algorithm is only statistically likely to converge (though, in practice, it will actually do so for a far
larger class of problems). As a result, unlike some iterative procedures, the Genetic Algorithm cannot
simply be stopped after a fixed number of generations. Instead, the properties of the Solution Pool
must be analysed to determine when the programme should stop. The simplest method involves
stopping when the fittest solution is “good enough”. Clearly, this involves a value judgement
external to the definition of the problem. Another possibility is to stop the programme when the
rate of change in best solution fitness drops below a specified level. Unfortunately the behaviour of
the Genetic Algorithm means that improvements in fitness are often “stepped” as the Genetic



Operators give rise to whole ranges of new possibilities to be explored. For this reason more
sophisticated approaches analyse the Solution Pool continuously and measure fitness in the whole
population. Another advantage of this technique is that it allows for the fact that convergence is
never total because of the Mutation Operator. There is always a certain amount of “mutation noise”
in the Solution Pool even when it has converged.

Developing the Genetic Algorithm

The previous section was intended to provide a summary of the main aspects of design and a feel for
the operation of a typical instrumental Genetic Algorithm (one that is supposed to solve a pre-
defined problem as efficiently as possible). In the next two subsections, | describe a variety of
generalisations that move the Genetic Algorithm away from the instrumental interpretation and
towards the possibility of realistic description of certain social processes. This involves enriching the
syntax for solution representations, developing formal techniques for analysing the behaviour of
evolutionary models and making various aspects of the evolutionary process endogenous. The fact
that these generalisations develop naturally from previous discussions suggests that a suitably
sophisticated Genetic Algorithm might serve as a framework for evolutionary models of (carefully
chosen) social phenomena. | shall try to show that Genetic Programming (as an extension of Genetic
Algorithms) is particularly suitable for this purpose.

Generalising the Solution Representation

In the simplest Genetic Algorithm, the solution representation is just a list of numbers with a fixed
length. Each gene (number) in the genotype (list) represents an object like a city in the Travelling
Salesman Problem. But there is no reason why the Genetic Algorithm should be limited to solving
problems using such a restricted representation. The enrichment of the syntax for solution
representations has proceeded in three overlapping domains: the computational improvement of
programmes implementing Genetic Algorithms, the incorporation of useful insights from biology and
the study of theoretical requirements for the use of different solution representations.

Developments of the first sort are those which broaden the capabilities of the Genetic Algorithm
itself. Instead of solutions of fixed length “hard coded” by the programmer, Goldberg et al (1990)
have developed a “messy” Genetic Algorithm. This evolves an encoding of optimal length by varying
the lengths of potential solutions as well as their encoding interpretations. Schraudolph and Belew
(1992) have also addressed this problem, developing a technique called Dynamic Parameter
Encoding that changes the solution encoding in response to an analysis of the current Solution Pool.
(This technique avoids the loss of efficiency that results from premature convergence and the
consequent failure of parallel search.) Finally, Harvey (1993) has stressed the importance of variable
length genotypes in systems that are to display genuine increases in behavioural complexity.

Developments of the second sort have arisen from the study of biological systems. Smith et al (1992)
have developed a Genetic Algorithm that produces a diverse coexistent population of solutions in

“equilibrium” rather than one dominated by a single “optimal”
population is capable of generalisation. This approach also forms the basis of the Classifier Systems

discussed in Forrest (1991). Here groups of “IF [condition] THEN [action]” rules form coexistent data

solution. In this way, the coexistent

structures that can jointly perform computational tasks. Belew (1989, 1990) has developed this
notion further by considering models in which the solutions themselves take in information from the
environment and carry out a simple form of learning. Koza (1992b, 1992c) considers the possibility



of co-evolution. This is a process in which the fitness of a solution population is not defined relative
to a fixed environment or Fitness Function but rather in terms of another population. He applies this
technique to game strategy learning by Genetic Programmes. Clearly this development is important
to models of social systems where we can seldom define, let alone agree, a clear objective ranking of
alternative social arrangements. In a sense, it is the existence of a Fitness Function that identifies
instrumental (rather than descriptive) applications of Evolutionary Algorithms. The exception might
be a model in which different solutions to a problem were created “subconsciously” in the style of a
Genetic Algorithm but were then evaluated “rationally” by an agent. For an example see Chattoe
and Gilbert (1997).

Developments of the third sort involve the adaptation of formal systems such as grammars to serve
as solution representations. Antoinisse has developed a representation and set of Genetic Operators
that can be used for any problem in which legal solutions can be expressed as statements in a formal
grammar (Antoinisse 1991). Koza (1992a, 1994) has developed a similar though far more general
representation involving the syntax of computer languages. This approach (called Genetic
Programming) will received detailed discussion in its own section shortly.

Making the Process of Evolution Endogenous

So far, most of the Genetic Algorithm generalisations discussed have been instrumental in their
motivation and use. The abstractions and limitations in the simple Genetic Algorithm have not been
viewed as unrealistic but merely unhelpful (since they are engineering solutions rather than
attempts to describe and understand complex social behaviour). The interesting question from the
perspective of this chapter is how it is possible to develop simulations based on Evolutionary
Algorithms which are not just instrumentally effective (allowing firms to survive by learning about
their market situation for example) but actually provides a convincing (“descriptive”) insight into
their decision processes and the complexity of the resulting system. At the same time, the powerful
self-organising capabilities of Evolutionary Algorithms may serve to provide an alternative
explanation of observed stability (and instability) in social systems which do not (or cannot) involve a
high level of individual rationality. Despite the instrumental nature of most current developments in
Genetic Algorithms, the trend of these developments suggests an important issue for the design of
descriptive models.

Most of the developments discussed above can be characterised as making various aspects of the
process of evolution endogenous. Instead of exogenous system level parameters that are externally
“tuned” by the programmer for instrumental purposes, various parts of the evolutionary process
become internalised attributes of the individual solutions. They need not be represented in the
solution explicitly as numerical parameters. They are parameters in the more general sense that
they alter the process of evolution and may be adjusted by the programmer. For example, the level
of mutation may emerge from some other process (such as endogenous copying of information
through imitation) rather than being “applied” to the solutions. Co-evolution provides a good
example of this approach. In the instrumental Genetic Algorithm, the Fitness Function is specified by
the programmer and applied equally to all solutions, producing an answer to some question of
interest. To follow an old Darwinian example, this is equivalent to the deliberate breeding of
particular dog breeds. In co-evolving Genetic Algorithms, as in biological evolution, there is no fixed
Fitness Function. Fitness can only be measured relative to the behaviour of other agents that
constitute an important part of the environment. This is equivalent to the production of the dog



species by biological evolution. Another example is provided by the Classifier Systems briefly
discussed above. The simple Genetic Algorithm assumes that the fitness of an individual solution is
independent of the fitness of other solutions. In practice, the fitness of one solution may depend on
the existence and behaviour of other solutions. In biology, this is acknowledged in the treatment of
altruism (Becker 1976, Boorman and Levitt 1980) and of group selection (Hughes 1988).

The use of solutions that are syntactically identical also abstracts from another important feature of
evolution. Because the solutions only differ semantically there is no sense in measuring the relative
“cost” of each. By contrast, when solutions differ syntactically, selection pressure may operate to
produce shorter solutions as well as better ones. In descriptive models, “fitness” no longer
measures an abstract quantity but describes the efficient scheduling of all scarce resources used
including time. The less time is spent making decisions (provided they are sensible) the more time
can be spent on other things. To put this point in its most general terms, organisms (and firms) are
dynamic solutions to a dynamic environment while the simple Genetic Algorithm is a static solution
to a static environment. Since social environments are dynamic, one way in which social agents can
evolve or adapt is by evolving or adapting their models of that environment. Thus, an important way
in which descriptive models can make the evolutionary process endogenous is by simulating agents
that develop and test their own interpretations of the world in an evolutionary manner rather than
being “gifted” with a fixed set of interpretations or decision processes by the modeller (Dosi et al
1999).

The value of making parts of the process specification endogenous can only be assessed in specific
cases using descriptive plausibility as the main criterion. For example, if the rate of mutation can
realistically be treated as fixed over the lifetime of a given evolutionary process it makes little
practical difference whether it is represented as an extra global parameter or as part of the
representation for each solution. In such cases, instrumental considerations such as computational
efficiency may as well decide the matter. By contrast, making fitness endogenous will probably have
a major effect on the behaviour of the system. In particular, there will be a tension between the
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descriptive plausibility of this change and the “instrumental” desirability of convergence to a unique

optimum facilitated by an external Fitness Function.

This aspect of Genetic Algorithm design provides a new insight into the distinction between
instrumental and descriptive models. Instrumental models are those allow the programmer to
achieve her goals whatever they are. By contrast, the only goal that is permitted to shape a
descriptive model is that of effective description as determined by empirical evidence. What
determines the extent to which mutation should be modelled as a process inhering in agents is the
extent to which the mutation process inheres in agents. Only once it has been shown that the
mutation rate does not vary significantly across agents should it be represented as an environmental
variable.

To sum up then, Genetic Algorithms constitute a broad class of powerful evolutionary search
mechanisms with an active research agenda. Some (but not all) of the subsequent developments to
the basic Genetic Algorithm are valuable to the descriptive modelling of social systems. (In addition
some developments may have value in the characterisation of models. In the long term it may be
possible to prove formal convergence results for descriptively realistic systems.) | now turn to a
discussion of Genetic Programming, a significant variant of the Genetic Algorithm based on the idea



of “evolving” computer programmes which can both solve instrumental problems and represent sets
of practices agents use to address the problems their environment creates for them.

Genetic Programming

The fundamental insight of Genetic Programming (Koza 1992a, 1994) is that Evolutionary Algorithms
do not need to be limited to static representations or adaptation in a static environment. The
approach originated in an instrumental concern, the possibility of evolving efficient computer
programmes rather than having to design them explicitly (Koza 1991). However, it rapidly became
clear that the power of the technique could be extended to any process which could be represented
as an algorithm provided the fitness of different solutions could be measured (Koza 1992d). The
possibility of developing descriptive models of agents was also considered early on (Koza 1992c). In
most models of this kind, however, the fitness of the programme representing an agent is assessed
by its ability to fulfil exogenous goals. Agents typically “compete” against the environment on an
equal footing rather than constituting that environment.

The potential of such an approach is tremendous. It involves the possibility of an evolutionary
process that operates on the richest representation language we can envisage: the set of
computable functions. These functions can model the capability to collect, abstract, store and
process data from the environment, transfer it between agents and use it to determine action.
Furthermore, we know that (in principle at least) languages within the class of computable functions
can also represent important features of human consciousness like self-awareness and self-
modification of complex mental representations (Kampis 1991, Metcalfe 1994, Fagin et al 1995).

A simple example illustrates the most common solution representation used in Genetic
Programming. This can be visualised as a tree structure and translates exactly into the set of “S-
expressions” available in the LISP programming language (Friedman and Felleisen 1987). This is
convenient for programming purposes because LISP comes already equipped to perform operations
on S-expressions and can therefore easily and efficiently implement suitable Genetic Operators. The
tree structure in Figure 4 is equivalent to the S-expression (OR (AND (NOT DO) (NOT D1))) (AND DO
D1)). This is the definition of the XOR (exclusive or) function. For obvious reasons, DO and D1 are
referred to as terminals and the set {AND, OR, NOT} are referred to as functions. The choice of a
suitable set of functions and terminals (the equivalent of the solution representation in Genetic
Algorithms) is a key part of Genetic Programming. Functions are by no means limited to the logical
operators. They can also include mathematical operators and programming language instructions.
Similarly, terminals can represent numerical (or physical) constants, a variety of “sensor” inputs from
the environment (including the observable actions of other agents) and “symbolic” variables like
“true” and “false”.
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Figure 4. An S-Expression

The instrumental measurement of fitness involves providing the S-expressions with different
“inputs”, in this case truth values for DO and D1 and assessing the extent to which the desired
“output” results. For example, in Koza (1991) a programme to generate random numbers was tested
by measuring the statistical properties of the number sequences it generated and rewarding such
features as uncorrelated residuals. If S-expressions represent agents that are capable of action in an
environment, success can be measured by the ability to modify the relationship between the agent
and the environment in a certain way, for example by following a trail successfully. (The further
along the trail an agent gets the fitter its programme.) It should be noted that the instrumental
measurement of fitness requires a fairly precisely defined problem and solution grammar. On the
other hand, the descriptive modelling of interaction need not. In order to do “well enough” in the
market, a firm only needs to make some profit in every period sufficient to cover its costs. It may or
may not have an internal goal to do better than this or even to make as much profit as it possibly can
but this goal is not required for its survival (and may, in some cases, actually be counter-productive).

This discussion raises several potential difficulties with the descriptive use of Genetic Programming.
However, these appear to recede on further consideration of the corresponding solutions to these
problems in instrumental applications. The first difficulty is designing Genetic Operators that are
guaranteed to produce meaningful offspring. In the S-expression representation, it is clear that a cut
can be made at any point on the tree and the crossing of two such fragmented parents will always
result in two legal offspring. However, the price to be paid for this advantage is that solutions must
have a hierarchical form. More complicated function sets, mixing numerical and logical functions for
example, must restrict crossover to prevent such outcomes as (+ 4 TRUE) or (NOT 6).

However, given the descriptive interpretation of Genetic Operators, it is plausible that agents should
know the syntactic rules of combination for the set of terminals and operators they possess. As such
the relevant “descriptive” Genetic Operators may execute rather more slowly than the simple
instrumental ones but it is not unreasonable to suppose that only syntactically correct trees will



result. However, this raises another interesting possibility for using Genetic Operators. A good
illustration is provided by a second difficulty with Genetic Programming, that of “bloating”. This
occurs because Genetic Programmes sometimes grow very large and contain substantial amounts of
syntactically redundant material. (If a tree is trying to converge on a specific numerical value, for
example, any sub trees evaluating to 0 are syntactically redundant.) Bloating produces a number of
difficulties. Firstly, it slows down the evaluation of trees. Secondly, it becomes harder to interpret
the trees and assess their behavioural plausibility. Finally, it is descriptively unsatisfactory. We do
not expect real human decision processes to contain pointless operations (although bureaucratically
specified production processes might, for example). Unfortunately, the obvious solution (the
exogenous penalisation of long solutions) lacks precision. It is not possible to establish how long
solutions to a particular problem “ought” to be without making arbitrary assumptions. The result is
an ungrounded trade-off between length and quality. An interesting alternative is to introduce
“purely syntactic” Genetic Operators. These take no account of tree fitness but simply look for
redundant material within trees. For example, a Genetic Operator which replaced instances of the
pattern (* constant 0) with 0 would be very simple to implement.

This approach allows firms (for example) to apply plausible syntactic knowledge to the structure of
their decision processes (“rationalisation” in the non pejorative sense) without compromising the
assumption (opposed to extreme economic rationality) that they cannot evaluate the fitness of a
strategy without trying it in the market.

It also suggests a possible solution to another persistent problem with Genetic Programmes, that of
interpretation. Even quite small trees are often hard to interpret and thus to evaluate behaviourally.
Application of syntactic Genetic Operators may reduce the tree to a form in which it can be more
easily interpreted. Another approach might be to use a Genetic Programming instrumentally to
interpret trees, giving the greatest fitness to the shortest tree which can predict the output of a
decision process tree to within a certain degree of accuracy. Thus, in principle at least, the Genetic
Programming approach can be extended to include processes that are behaviourally similar to
abstraction and refinement of the decision process itself.

As in the discussion of Genetic Algorithms above, | have kept this discussion of Genetic Programming
relatively technical with some digressions about its general relevance to modelling social behaviour.
In the final section of this chapter, | will present some evolutionary models in social science
specifically based on Evolutionary Algorithms. This discussion allows us to move from general to
specific issues about the applicability of biological analogies to social systems. In particular, | will try
to show why models based on Genetic Programming and some Classifier Systems are more
behaviourally plausible than those based on Genetic Algorithms.

Example using Genetic Algorithms: The Arifovic “cobweb” model

Arifovic (1994) is probably responsible for the best-known simulation of this type representing the
guantity setting decisions of firms to show convergence in a cobweb model. She argues that the
Genetic Algorithm both produces convergence over a wider range of model parameters than various
forms of rational and adaptive learning, but also that it mimics the convergence behaviour of
humans in experimental cobweb markets. Arifovic draws attention to two different interpretations
of the Genetic Algorithm and explores the behaviour of both. In the “single population
interpretation”, each firm constitutes a single genotype and the Genetic Algorithm operates over the



whole market. In the “multiple population interpretation”, each firm has a number of genotypes
representing alternate solutions to the quantity setting decision and operates its own “internal”
Genetic Algorithm to choose between them. She shows that using a basic Holland-type Genetic
Algorithm, neither interpretation leads to convergence on the Rational Expectations equilibrium for
the cobweb market. When she adds her “Election” Genetic Operator however, both interpretations
do so. The Election Operator involves using Crossover but then evaluating the offspring for
profitability on the basis of the price prevailing in the previous period. The effect of this is to add
some “direction” to the application of Genetic Operators, in fact a hill climbing component. An
offspring is only added to the population if it would have performed better than its parents did in
the previous period. This approach does not require any implausible knowledge as it is based on past
events. However, it appears that the motivation for introducing the Election Operator is
instrumental, namely to ensure perfect convergence to the Rational Expectations equilibrium (a goal
of economic theory rather than a property of real markets necessarily). Interestingly, the graphs
shown in the paper suggest that the Genetic Algorithm has done very well in converging to a stable
(if mutation noise augmented) price fairly close to the Rational Expectations equilibrium. In fact,
Arifovic shows how the Election Operator endogenously reduces the effective mutation rate to zero
as the system approaches the theoretical equilibrium. She also points out that the Election Operator
does not harm the ability of the Genetic Algorithm to learn a new equilibrium if the parameters of
the cobweb model change. What she doesn’t explain is why the goal of the model should be to
produce the theoretical equilibrium.

In fact, there are problems with both of her models that serve as instructive examples in the
application of evolutionary ideas. The single population interpretation seems to involve a standard
Holland-type Genetic Algorithm even down to a Breeding Pool that has no behavioural
interpretation in real systems. There is also a problem with the use of Genetic Operators that is
general in Genetic Algorithms. The way in which the bit strings are interpreted is very precise. If one
firms uses Crossover involving the price strategy of another, it is necessary to “gift” a common
representation to all firms and assume that firms know precisely where bit strings should “fit” in
their own strategies. Given the encoding Arifovic uses, inserting a bit string one position to the left
by mistake doubles the price it produces. In descriptive terms, this seems to be the worst of both
worlds. It is easy to see how one firm could charge the same price as another, or (with more
difficulty) acquire a “narrative” strategy fragment like “keep investment in a fixed ratio to profit” but
not how firms could come to share a very precise arbitrary representation and copy instances
around exactly. More generally, encoding price in this way is just behaviourally odd. It is hard to
imagine what a firm would think it was doing if it took a “bit” of one of its prices and “inserted it”
into another. Of course, the effect would be to raise or lower the price, but the way of going about it
is very bizarre. | think the reason for this is that an encoding is not a procedure that is endogenously
evolved. A Genetic Programme that calculates price by taking the previous price of another firm,
adding unit cost and then adding 2 is telling a firm behaviourally how to determine price. These are
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“real” procedures given by the ontology of what a firm knows and knows how to do: the set of
operators and terminals. By contrast there has to be reason why a firm would bother to encode its
price as a bit string rather than just operating on them directly. Unless this encoding is “gifted”, it is

not clear how (or why) the firm would develop it.

The multiple population interpretation is much more plausible in behavioural terms since the
problem representation only needs to be the same within a firm, although the strangeness of



“combining” prices remains. A firm applying Genetic Operators to its own strategies can reasonably
be assumed to know how they are encoded however.

However, both interpretations come up against a serious empirical problem noted by Olivetti (1994).
Because the Election Operator is effectively a hill-climbing algorithm, it fails to converge under quite
small changes to the assumptions of the model. In particular, Olivetti shows that the system doesn’t
converge when a white noise stochastic disturbance is added to the demand function. This suggests
that Arifovic has not understood the main advantage of the Genetic Algorithm and her pursuit of
instrumental convergence at the expense of behavioural plausibility is actually counter-productive.
In a sense, this is just a reprise of the previous instrumental insight. Genetic Algorithms perform
better on difficult problems precisely because they do not “hill climb” (as the Election Operator
does) and can thus “jump” from one optimum to another through parallel search.

Example Using Classifier Systems: The Moss price setting model

As discussed briefly above, Classifier Systems consist of sets of “IF [condition] THEN [action]” rules
that can collectively solve problems. They are evolutionary because new rules are typically
generated using a Genetic Algorithm to select, recombine and mutate the most effective rules in the
population. However, there is one significant (and potentially problematic) difference between
Classifier Systems and Genetic Algorithms or Genetic Programming. This is the allocation of fitness to
the individual rules, frequently using the so-called Bucket Brigade algorithm. This allows individual
rules to “bid” fitness in order to take part in the set that is used to solve the problem in a particular
instance. Rules taking part in a successful outcome then receive “recompense” also in terms of
fitness. Unfortunately, the behavioural interpretation for this algorithm is not clear. In addition, the
system is required to make decisions about how to “allocate” fitness between participating rules.
This is the “Credit Assignment Problem” recognised in Artificial Intelligence and it is hard to produce
effective general solutions. In particular, rules that are only used occasionally may nonetheless be
essential under specific circumstances. (It is possible that an instrumental approach and lack of
biological awareness have created this problem but that it is not actually intrinsic to this kind of
modelling. In biological evolution there is no credit assignment. Phenotypic traits stand and fall
together.) That said, the Classifier System has one definite advantage over both Genetic
Programming and Genetic Algorithms assuming these difficulties can be overcome. This is that the
individual rules may be much simpler (and hence more easily interpreted behaviourally) than
Genetic Programmes. This ease of interpretation also makes it more plausible that individual rules
(rather than sub trees from Genetic Programmes or very precisely encoded bit strings from Genetic
Algorithms) might be transferred meaningfully between firms either by interpretation of observable
actions or “gossip”. Interestingly, despite their advantages, Classifier Systems are easily the least
applied Evolutionary Algorithms for understanding social behaviour and this lacuna offers real
opportunities for new research.

In what appears to be one of the earliest applications to firm decision making, Moss (1992)
compares a Classifier System and a (non-evolutionary) algorithm of his own design on the task of
price setting in a monopoly. His algorithm hypothesises specific relationships between variables in
the market and then tests these. For example, if an inverse relationship between price and profit is
postulated, the firm experiments by raising price and seeing whether profit actually falls. If not, the
hypothesis is rejected and another generated. If it works, but only over a range, then the hypothesis
is progressively refined. The conclusion that Moss draws from this approach illustrates an important



advantage of Genetic Programming over Genetic Algorithms and (some) Classifier Systems, that its
solutions are explicitly based on process and therefore explanatory. Moss points out that the simple
Classifier System simply evolves a price while his algorithm shows how the firm evolves a
representation of the world that allows it to set a price. Although not doing it quite as explicitly as
his algorithm, a Genetic Programme may incorporate a stylised representation of market
relationships into the encoding of the decision process. (Of course, in certain circumstances the firm
may lack the operators and terminals to deduce these relationships adequately or they may not
form a reliable basis for action. In this case, simpler strategies like “price following” — simply setting
the same price as another firm — are likely to result.)

To return to the point made by Moss, all the Classifier System models so far developed to study firm
behaviour seem to be “flat” and “hard coded”. By “flat” | mean that only a single rule is needed to
bridge the gap between information received and action taken. In practice, the Classifier System
paradigm is capable of representing sets of rules that may trigger each other in complex patterns to
generate the final output. This set of rules may also encapsulate evolved knowledge of the
environment although “hard coding” prevents this. For example, we might model the production
process as a Classifier System in which the rules describe the microstructure of the factory floor:
where each worker went to get raw materials, what sequence of actions they performed to
transform them and where they put the results. In such a model events (the arrival of a partially
assembled computer at your position on the production line) trigger actions (the insertion of a
particular component). However, running out of “your” component would trigger a whole other set
of actions like stopping the production line and calling the warehouse. The construction of such
“thick” Classifier Systems is a task for future research. “Hard coding” implies that each rule bridges
the gap between input and output in the same way, suggesting the common representation of
Genetic Algorithms with its attendant behavioural implausibility. In the models described above
decision-makers do not have the option to add to the set of conditions or to change the mappings
between conditions and actions: changing price on the basis of customer loyalty rather than costs
for example. There is nothing in the Classifier System architecture to prevent this, but all the current
models seem to implement the architecture in a simplified and behaviourally implausible way that
makes it more like a Genetic Algorithm than Genetic Programming in terms of “hard coding” of
representations and decision processes.

Example using Genetic Programming: An artificial stock market

In this example there is a simulated market for a limited number of stocks, with a fixed number of
simulated traders and a single “market maker”. Each trader starts off with an amount of cash and
can, in each trading period, seek to buy or sell each of the kinds of stock. Thus at any time a trader
might have a mixture of cash and amounts of each stock. A single market maker sets the prices of
each stock at the beginning of each trading period depending on the last price and the previous
amount of buying and selling of it. The ‘fundamental’ is the dividend paid on each stock, which for
each stock is modelled as a slowly moving random walk. There is a transaction cost for each buy or
sell action by the traders. Thus there is some incentive to buy and hold stocks and not trade too
much, but in general more money can be made (or lost) in short-term speculation. The market is
endogenous except for the slowly changing dividend rate so that the prices depend on the buy and
sell actions and a trader’s success depends on “out-smarting” the other traders.



In the original Artificial Stock Market model (Arthur et al 1997) each artificial trader had a fixed set of
price prediction strategies. At each time interval they would see which of these strategies was most
successful at predicting the price in the recent past (fixed number of time cycles) and rely on the
best of these to predict the immediate future price movements. Depending on its prediction using
this best strategy it would either buy or sell.

In the model presented here each trader has a small population of action strategies for each stock,
encoded as a GP tree. In each time period each artificial trader evaluates each of these strategies for
each stock. The strategies are each evaluated against the recent past (a fixed number of time cycles)
to calculate how much value (current value based on cash plus stock holdings at current market
prices) the trader would have had if they had used this strategy (taking into account transactions
costs and dividends gained), assuming that the prices were as in the recent past. The trader then
picks the best strategy for each stock and (given constraints of cash and holdings) tries to apply this
strategy in their next buy and sell (or hold) actions.

At the end of each trading period the set of action strategy trees are slightly evolved using the GP
algorithm. That is to say that they are probabilistically “remembered” in the next trading round
depending on their evaluated success, with a few of them crossed in a GP manner to produce new
variations on the old strategies and a very few utterly new random strategies introduced. Thus as a
result of this there is a lot of evolution of small populations occurring, namely a population for each
trader and each stock. Here each GP tree represents a possible strategy that the trader could think
of for that stock. The Genetic Programming algorithm represents the trader’s learning process for
each stock, thinking up new variations of remembered strategies, discarding strategies that are
currently unsuccessful and occasionally thinking up completely novel strategies. This is thus a direct
implementation of Campbell’s model of creative thinking known as “Blind Variation and Selective
Attention” (Campbell 1965). Further, it introduces notions of analogy and expertise into the model.
A strategy that is good for one stock is a priori likely to be good for another similar stock. Thus, if a
new stock is introduced, agents may use existing strategies to decide what to do about it. A new
trader will have relatively poor strategies generally and will not necessarily have the feedback to
choose the most appropriate strategy for a new stock. By contrast, an expert will have both a good
set of strategies to choose from and better judgement of which to choose. These aspects of social
(evolutionary) learning are clearly important in domains where there is genuine novelty which many
traditional approaches do not handle well (or in some cases at all.)

The nodes of the strategy trees can be any mixture of appropriate nodes and types. (Edmonds 2002)
uses a relatively rich set of nodes, allowing arithmetic, logic, conditionals, branching, averaging,
statistical market indices, random numbers, comparisons, time lags and the past observed actions of
other traders. With a certain amount of extra programming, the trees can be strongly typed (Haynes
et al 1996), that is certain nodes can take inputs that are only a specific type (say numeric) and
output a different type (say Boolean) — for example the comparison “greaterThan”. This complicates
the programming of the Genetic Operators but can result in richer and more specific trees.

Below are a couple of examples of strategies in this version of the stock market model. The output
of the expression is ultimately a numeric value which indicates buy or sell (for positive or negative

numbers, but only if that buy or sell is of a greater magnitude than a minimal threshold (which is a

parameter, allowing for the “do nothing” — hold — option).



e [minus [priceNow ‘stock-1’] [maxHistoricalPrice ‘stock-1']] — Sell if price is greater than the
maximum historical price otherwise buy;

e [lagNumeric [2] [divide [doneByLast ‘trader-2’ ‘stock-3’] [indexNow]]] — Do action of the
action done by trader-2 for stock-3 divided by the price index 3 time periods ago.

There are now a number of techniques in the field of Evolutionary Computation that can make such
algorithms more efficient or give them different characteristics. Clearly efficiency is not the primary
consideration here but rather how to make such algorithms correspond to the behaviour of
observed social actors. In particular a large population of strategies would correspond to a very
powerful ability in a human to find near-optimal strategies, which is clearly unrealistic. Thus a
relatively small population of strategies is “better” since it does mean that particular traders get
‘locked-in’ to a narrow range of strategies for a period of time (maybe they all do so badly that a
random, novel strategy does better eventually). This reflects the existence of “group think” and
trading “styles” that can reasonably be anticipated in real markets. Other relevant issues might be
that traders are unlikely to ever completely discard a strategy that has worked well in the past.
(Many evolutionary models fail to take account of the fact that humans are much better at recall
from structured memory than they are at reasoning. Such a model might thus “file” all past
strategies but only have a very small subset of the currently most effective ones in live memory.
However, if things started going very badly, it would be easy to choose not from randomly generated
strategies but from “past successes”. It is an interesting question whether this would be a more
effective strategy.) Clearly however the only ultimate tests are whether the resulting learning
behaviour sufficiently matches that of observed markets and whether the set of operators and
terminals can be grounded in (or at least abstracted from) the strategies used by real traders. (Either
test taken alone is insufficient. Simply matching behaviour may be a coincidence while “realistic”
trading strategies that don’t match behaviour have either been abstracted inappropriately or don’t
really capture what traders do. It is quite possible that what they are able to report doing is only part
of what they actually do.)

Given such a market and trader structure what transpires is a sort of learning “arms-race” where
each trader is trying to “out-learn” the others, detecting the patterns in their actions and exploiting
them. The fact that all agents are following some strategy at all times ensures that (potentially)
there are patterns in existence to be out-learned. Under a wide range of conditions and parameter
settings one readily observes many of the qualitative patterns observed in real stock markets —
speculative bubbles, crashes, clustered volatility, long-term inflation of prices and so on. Based on
the simulation methodology proposed by Gilbert and Troitzsch (2005) and the idea of generative
social science put forward by Epstein (2007), this outcome shows how a set of assumptions about
individual actions (how traders implement and evolve their strategies) can potentially be falsified
against aggregate properties of the system such as price trends across the range of stocks. Such
models are an active area of research a recent PhD which surveys these is (xxxx).

Example: The functional survival of “strict” churches

There are clear advantages to using existing evolutionary algorithms to understand complex social
processes as we hope we have shown through the examples above. Apart from an opportunity to
discuss the “technicalities” of evolutionary algorithms through looking at simple cases, it is valuable
to have programs that can be used “off the shelf” (rather than needing to be developed from



scratch) and for which there is an active research agenda of technical developments and formal
analysis which can be drawn on. However, the major downside of the approach has also been hinted
at (and will be discussed in more detail in the conclusion). Great care must be exercised in choosing
a domain of application for evolutionary algorithms in understanding complex social systems. The
more an evolutionary algorithm is used “as is”, the smaller its potential domain of social application
is likely to be. Furthermore, while it is possible, by careful choice of the exact algorithm, to relax
some of the more socially unhelpful assumptions of evolutionary algorithms (the example of an
external Fitness Function and a separate Breeding Pool have already been discussed), the danger is
that some domains will simply require too much modification of the basic evolutionary algorithm to
the point where the result becomes awkward or the algorithm incoherent. (A major problem with
existing models has been the inability of their interpretations to stand up to scrutiny. In some cases,
such as the Election Operator proposed by Arifovic, it appears that even the designers of these
models are not fully aware of the implications of biological evolution.)

As suggested at the beginning of the chapter, the other approach, formerly rare but now increasingly
popular is to start not with an evolutionary algorithm but with a social system and build a simulation
that is nonetheless evolutionary based on the structure of that. The challenge of choosing domains
with a clear analogy to biological evolution remains but is not further complicated by the need to
unpick and redesign the assumptions of an evolutionary algorithm. Such an example of a “bespoke”
evolutionary simulation is provided in this section.

(lannaccone 1994) puts forward an interesting argument to explain the potentially counter-intuitive
finding that “strict churches are strong”. It might seem that a church that asked a lot of you, in terms
of money, time and appropriate behaviour, would be less robust (in this consumerist era) than one
that simply allowed you to attend on “high days and holidays” (choosing your own level of
participation). However, the evidence suggests that it is the liberal churches that are losing members
fastest. lannaccone proposes that this can be explained by reflecting on the nature of religious
experience. The satisfaction that people get out of an act of worship depends not just on their own
level of involvement but also that of all other participants. This creates a free rider problem for
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“rational” worshippers. Each would like to derive the social benefit while minimising their individual
contribution. Churches are thus constantly at the mercy of those who want to turn up at Christmas
to a full and lively church but don’t want to take part in the everyday work (like learning to sing the
hymns together) that makes this possible. lannaccone then argues that an interesting social process
can potentially deal with this problem. If we suppose that churches do things like demanding time,
money and appropriate behaviour from their worshippers, this affects the satisfaction that
worshippers can derive from certain patterns of activity. If the church can somehow make non
religious activities less possible and less comfortable, it shifts the time allocations of a “rational”
worshipper towards the religious activities and can simultaneously reward him or her with the
greater social benefit that comes from the church “guiding” its members in this way. To take a mildly
contrived example. Muslims don’t drink alcohol. They also dress distinctively. A Muslim who wanted
to drink couldn’t safely ask his friends to join him, could easily be seen entering or leaving a pub by
other Muslims and would probably feel out of place and uncomfortable once inside (quite apart
from any guilt the church had managed to instill). The net effect is that Muslims do not spend much
time in pubs (while many others in the UK do) and have more time for religious activity. Of course, it
is easy to pick holes in the specifics of lannaccone’s argument. Why would the Muslim not dress up
in other clothes? (That itself might need explanation though.) Why not engage in another non



religious activity that was not forbidden? Why assume that only religious activities are club goods?
(Isn’t a good night at the pub just as much a result of collective effort?)

However, regardless of the details, the basic evolutionary point is this. Religious groups set up
relatively fixed “creeds” that tell members when and how to worship, what to wear and eat, how
much money must be given to the church and so on. Given these creeds worshippers join and leave
churches. To survive, churches need worshippers and a certain amount of “labour” and income to
maintain buildings, pay religious leaders and so on. Is it in fact the case, as lannaccone argues that
the dynamics of this system will result in the differential survival of strict churches at the expense of
liberal ones? This is in, fact, a very general framework for looking at social change. Organisations like
firms depend on the ability to sell their product and recruit workers in a way that generates profit.
Organisations like hospitals are simultaneously required to meet external goals set by their funders
and honour their commitments to their “customers”: On one hand, the budget for surgery may be
exhausted. On the other, you can’t turn away someone who is nearly dead from a car crash knowing
they will never survive to the next nearest accident and emergency department. This evolutionary
interplay between organisations facing external constraints and their members is ubiquitous in social
systems.

Before reporting the results and discussing their implications, two issues must be dealt with.
Because this is a “two sided” process (involving worshippers and churches) we must attend to the
assumptions made about the behaviour of these groups. In the model discussed here, it was
assumed that churches were simply defined by a fixed set of practices and did not adapt themselves.
This is clearly a simplification but not a foolish one. Although creeds do adapt, they often do so over
very long periods and this is a risky process. If worshippers feel that a creed is just being changed for
expedience (rather than in a way consistent with doctrine) they may lose faith just as fast asin a
church whose creed is clearly irrelevant to changed circumstances. Speculatively, the great religious
are those that have homed in on the unchanging challenges and solutions that people face in all
times and all places while the ephemeral ones are those that are particular to a place or set of
circumstances. Conversely, the model assumes that worshippers are strictly rational in choosing the
allocations of time to different activities that maximise their satisfaction. Again, this assumption isn’t
as artificial as it may seem. Although we do not choose religions like we choose baked beans, there
is a still a sense in which a religion must strike a chord in us (or come to do so). It is hard to imagine
that a religion that someone hated and disbelieved in could be followed for long merely out of a
sense of duty. Thus, here, satisfaction is being used in a strictly subjective sense without inquiring
into any potential objective correlates. This life, for me, is better than that life. In terms of predicting
individual behaviour, this renders satisfaction a truism but in the context of the model (and
explaining the survival of different kinds of churches) what matters is not what people happen to like
but the fact that they pursue it. To sum up, we could have represented the churches as more
adaptive and the worshippers as less adaptive but since we are interested in the interplay of their
behaviours (and, incidentally, this novel approach reveals a shortage of social science data about
how creeds change and worshippers participate in detail), there is no definite advantage to doing so.

In a nutshell, the model works as follows (more details can be found in Chattoe 2006a). Each agent
allocates their time to activities generating satisfaction (and different agents like different things to
different extents). They can generate new time allocations in two main ways. One is by
introspection, simply reflecting that a bit more of this and a bit less of that might be nicer. The other



is by meeting other agents and seeing if their time allocations would work better. This means, for
example, that an agnostic who meets a worshipper from church A may suddenly realise that leading
their life in faith A would actually be much more satisfying than anything they have come up with
themselves. Conversely, someone “brought up in” church B (and thus mainly getting ideas from
other B worshippers about “the good life”) may suddenly realise that a life involving no churchgoing
at all is much better for him or her (after meeting an agnostic). Of course, who you meet will depend
on which church you are in and how big the churches (and agnostic populations) are. It may be hard
to meet agnostics if you are in a big strict church and similarly, there are those whom a more
unusual religion might suit very well who will simply not encounter its creed. Churches are created
at a low rate and each one comes with a creed that specifies how much time and money members
must contribute and how many non religious activities are “forbidden”. Members can only have time
allocations that are compatible with the creed of the church. These allocations determine the social
benefits of membership discussed above. If a church cannot meet minimum membership and money
constraints, it disappears. Thus, over time, churches come and go, differing in their “strictness” and
their survival is decided by their ability to attract worshippers and contributions. Worshippers make
decisions that are reasonable (but not strictly rational in that they are not able instantaneously to
choose the best time allocation and church for them — which may include no church —for any state
of the environment). This system reproduces some stylised facts about religion. New churches start
small and are often (but not always) slow to grow. Churches can appear to fade and then experience
resurgences. There are a lot of small churches and very few large ones.

What happens? In fact, there is almost no difference between the lifetimes of liberal churches and
mildly strict ones. What is clear however is that very strict churches (and especially cults — which
proscribe all non religious activities) do not last very long at all. It is important to be clear about this
as people often confuse membership with longevity. It is true that strict churches can grow very fast
and (for a while) very large but the issue at stake here is whether they will survive in the longterm.
To the extent that the assumptions of the simulation are realistic, the answer would appear to be
no. Thus we have seen how it is possible to implement a reasonably coherent biological analogy in a
social context without using a pre-existing evolutionary algorithm.

Conclusion: Using biological analogies to understand social systems
Having presented a number of case studies of evolutionary algorithms in different application areas,
we are now in a position to draw some general conclusions about the design and use of evolutionary
simulations. Despite the fact that some have claimed that a generalised version of evolution (Blind
Variation and Selective Retention) is the basic template for human creativity (Campbell xx) and that
it is plausible that some processes similar to biological evolution do occur in human societies, it is
unlikely that these processes will be direct translations of biological evolution in all its details. For
this reason, we would propose that research into evolutionary models proceeds as follows (although
it is inevitable that there will be some backward and forward interplay between the stages for
reasons discussed below):

1) Start with your substantive research domain of interest (linguistics, stock markets, the rise
and fall of religious groups) and consider the general arguments for representing these (or
parts of them) in evolutionary terms. While it is seldom spelt out explicitly, there are actually
rather few candidate “general social theories” to explain the dynamic interaction of choice



and change. Unless one believes that individuals have the power and knowledge required
for rational action to benefit them (and note that this condition isn’t met in situations as
simple as the two person one shot Prisoner’s Dilemma), evolution is really the only coherent
and completely specified theory available.? Thus (and obviously the authors are biased in
this regard) if you believe that agents act on imperfect knowledge in an independently
operating® environment (such that there often a gap between what you expect to happen
and what happens, however effectively you collect and process data about your
environment), it is worth considering an evolutionary approach. We would argue that these
conditions are met in most social settings but economists would diasgree.

2) Consider the explicit specification of an evolutionary process for your particular domain of
research (perhaps using the four process specification above as a guide). The key choice
made in this context is a “coherent” object of selection (O0S) whose presence or absence is
empirically accessible. This makes organisations and firms with any kind of formal status
particularly suitable. For informal groups like families, for example, it is much less clear what
constitutes a “unit”. (Is it, in a traditional society setting, that they physically survive, or, in a
modern setting, that they still cohabit or are still on speaking terms? The problems here are
evident.) Interestingly, individuals (while obviously “physically” coherent) are still
problematic as objects of selection. Unless the model involves “bare” survival, it is less
obvious what happens when an agent is “selected”. However, examples still exist, such as
who is trading in particular markets for example. Most of the rest of the evolutionary
process specification follows naturally from the choice of an OOS. It then becomes fairly
clear what the resource driving selection is (food for tribal groups, profit for firms,
membership for voluntary organisations, attention for memes), what causes the birth and
death of OOS (sexual reproduction, merger, religious inspiration, bankruptcy, lack of interest
or memorability and so on) and what variation occurs between OOS. This last is an
interesting area and one where it is very important to have a clearly specified domain of
application. For example, consider industrial organisation. Textbook economic theory
creates in the mind an image of the archetypal kettle factory (of variable size), selling kettles
“at the factory gates” direct to customers and ploughing profits straight back into growth
and better technology. In such a world, a firm that is successful early on can make lots of
poor judgements later because it has efficient technology, market dominance, retained
profit and so on. As such, evolutionary pressure rapidly ceases to operate. Further, this kind
of firm does not “reproduce” (it merely gets larger) and even imitation of its strategy by
other firms (that are smaller and poorer) may not cause the effective “spread” of social
practices required by an evolutionary approach. (What works for the dominant firm may
actually be harmful to smaller “followers”.) By contrast, we can see the more modern forms
of competition by franchises and chains (Chattoe 1999) or the more realistic detail of
“supply chain production” as much more naturally modelled in evolutionary terms. In the
first case, firms do directly “reproduce” a set of practices (and style of product, décor,
amount of choice and so on) from branch to branch. More successful chains have more

%In fact, it might be argued that it is the only one. Rational choice cannot contend with novelty or the origin of
social order. By focusing on relative performance, no matter how absolutely poor, evolution can produce order
from randomness.

* This independence comes both from other social actors and physical processes like climate and erosion.



branches. Furthermore, the “scale” of competition is determined by the number of branches
and it is thus reasonable to say that successful business practices proliferate. Wimpy may
drive out “Joe Smith’s Diner” from a particular town but Joe Smith is never a real competitor
with the Wimpy organisation even if he deters them from setting up a branch in that town.
This means that selection pressure continues to operate with chains at any scale competing
with other chains at similar scales. Short of outright monoply, there is never a dominant
market position that is stable.* In the second case, we can see how open ended evolution
may create new opportunities for business and that supply chains as a whole constitute
“ecologies” (Chattoe-Brown 2009). Initially, each firm may transport its own goods to market
but once markets are sufficiently distant and numerous, there may be economies of scale in
offering specialist transport and logistics services (for example, all goods going from Bristol
to Cardiff in one week may be carried by a single carter or a firm may create a distribution
infrastructure so not all goods are transported directly from origin to destination pairwise
but via cost saving looped routes.) Again, it is clear how the organisations here must operate
successful practices that satisfy both suppliers (those who want to deliver goods) and
customers (those who want to receive them) and, further, how the nature of the business
environment may change continuously as a consquence of innovation (whether technical or
social). The creation of the refrigerated ship or the internal combustion engine may
foreclose some business opportunities (like city raising of animals or harness making) and
give rise to others which may or may not be taken up (spot markets, garages). These
examples show several things. Firstly, it is necessary to be very clear what you are trying to
understand as only then can the fitness of the evolutionary analogy be assessed. Secondly, it
is useful to have a systematic way (Chattoe 1998, 2006b) of specifying evolutionary models
since these stand or fall on their most implausible assumptions (particularly in social
sciences which aren’t very keen on this approach).’ Thirdly, there are a lot more
opportunities for evolutionary modelling than are visible to the “naked eye” particularly to
those who take the trouble to develop both domain knowledge and a broad evolutionary
perspective. Considering the ubiquity of branch competition and intermediate production in
the real world, the economic literature is amazingly distorted towards the “autonomous
kettle factory view” and simulation models of realistic market structures are scarcer still
(though this is just starting to change). The price of adopting a novel method is scepticism by
ones peers (and associated difficulties in “routine” academic advancement) but the rewards
are large domains of unexplored research opportunities and the consequent possibility for
real innovation. Finally, don’t forget that it is always possible to use an evolutionary
algorithm as a “black box learning system” within the “mind” of an agent or organisation,
although there is a design issue about interpreting this kind of model discussed in the next
section. Further, even as a “black box”, the learning algorithm can make a crucial difference
in simulations (Edmonds xx) and one cannot simply assume that any learning algorithm will
do.

* This is probably because the market is spatially distributed and the only way of making additional profits is by
opening more branches (with associated costs). There are no major economies of scale to be exploited as
when the kettle factory simply gets bigger and bigger with all customers continuing to bear the transport costs.
> More informally, “The assumptions you don’t realise you are making are the ones that will do you in”.



3) Explore whether data for your chosen domain is available (or can readily be got using
standard social science methods).6 If it is available, does it exist at both the individual level
and in aggregate? For example, is there observational data about firm price setting practices
(in board meetings for example) and long term historical data about the birth, death and
merger of firms in a particular industry and their prices over time? Because simulation is a
relatively new method, it is still possible to build and publish exploratory (or less flatteringly
“toy”) models of evolutionary processes but it is likely to get harder and may become
impossible unless the evolutionary model or the application domain is novel. It is almost
certainly good scientific practice to make the accessibility of data part of the research design
but it does not follow from this that only models based on available data are scientific. The
requirement of falsifiability is served by the data being collectable “in principle” not already
collected. The best argument to support claims of scientific status for a simulation is to
consider (as a design principle) how each parameter could be calibrated using existing data
or existing research methods. (The case is obviously weaker if someone has to come up with
a new data collection method first although it helps if its approach or requirements can be
sketched out a priori.) This aspect of research design also feeds into the decision about
whether to use an existing evolutionary algorithm and if so, which one. The emerging
methodology of social simulation (Gilbert and Troitzsch 2005, pp. 15-18, Epstein 2007) is to
make a set of empirically grounded hypotheses at the micro level (firms set prices thus) and
then falsify this ensemble at the macro level. (The real distribution of survival times for firms
is thus: It does or does not match the simulated distribution of survival times produced by
the model.) A problem will arise if it is hard to interpret the simulated price setting practices.
Suppose, for example, we use GP to model the evolution of trading strategies in stock
markets. We may use interviews or observation of real traders to decide what terminals and
operators are appropriate but, having let the simulation run and observed plausible
aggregate properties, we may still not know (and find it extremely hard to work out because
of the interpretation issue) whether the evolved strategies used are actually anything like
those which traders would (or could) use. Equating the empirical validation of the GP
grammar with the validation of the strategies evolved from it is bit like assuming that,
because we have derived a Swahili grammar from listening to native speakers that we are
then qualified to decide when Swahili speakers are telling the truth (rather than simply
talking intelligibly). It muddles syntax and semantics. The design principle here is then to
consider how the chosen evolutionary algorithm will be interpreted to establish the validity
of evolved practices. (Creative approaches may be possible here like getting real traders to
design — or choose — GP trees to trade for them or getting them to “critique” what are
effectively verbal “translations” of strategies derived from apparently successful GP trees as
if they from real traders.) In this regard, it is their potential ease of interpretation that makes
the relative neglect of CS models seem more surprising in evolutionary modelling.

4) Having first got a clear sense of what it is that needs to be modelled, it is then possible to
choose a modelling technique in a principled way. As the analysis of case studies suggest,
the danger with a “methods led” approach is that the social domain will be stylised (or
simply falsified) to fit the method. A subsidiary difficulty with the methods led approach is

®Ina way, it is black mark against simulation that this needs to be said. Nobody would dream of designing a
piece of statistical or ethnographic work without reference to the availability or accessability of data!



that even if the researcher is wise enough to use a modified evolutionary algorithm to mirror
a social process accurately (rather than distorting or abstracting the domain to fit the
method), inadequate technical understanding may render the modified algorithm
incoherent or ineffective. It is thus very important to understand fully any methods you plan
to apply particularly with regard to any instrumental assumptions they contain. (In making
convergence her goal for the GA cobweb model, Arifovic introduced an election operator
which actually rendered the GA less effective in solving hard problems. This issue would
probably have been foreseen in advance by a competent instrumental user of the GA
technique. The muddle arose from the interface between social description and the GA as a
highly effective instrumental optimisation device.) Having chosen a modelling technique, all
its supporting assumptions must also be examined in the light of the application domain. For
example, it is very important not to confuse single and multiple population interpretations
of a GA: Do firms each have multiple candidate pricing strategies and chose them by an
evolutionary process or is the evolutionary process of interest one in which single pricing
strategies succeed and fail with the associated firms “carrying” them? Each model (or some
combination) might be justified on empirical grounds but only if the difference in
interpretation is kept clearly in mind. Although we are sceptical that systems of realistic
social complexity would allow this, the principled choice of methods means that it is even
possible that some domains would not require simulation at all but could be handled by
mathematical models of evolution like replicator dynamics (Weibull 1995) or stochastic
models (Moran 1962). By contrast, however, if the properties of the chosen social domain
are too far from a standard evolutionary algorithm (such that it can neither be used
wholesale or deconstructed without collapsing into incoherence), the best solution is to
build a bespoke evolutionary model as was done for the “strict churches” case study. (At the
end of the day, evolutionary algorithms were themselves “evolved” in a completely different
engineering environment and we would not therefore expect them to apply widely in social
systems. Thus, great care needs to be taken to use them only where they clearly do apply
and thus have real value.) With free and widely used agent based modelling packages like
NetLogo <http://ccl.northwestern.edu/netlogo/> and associated teaching materials (Gilbert
and Troitsch 2005, Gilbert 2009), this is now much easier than it was. Ten years ago, one
reason to use an existing algorithm was simply the significant cost of building your own from
scratch. To sum up this strategy of research, the decision to use, modify or build an
evolutionary algorithm from scratch should be a conscious and principled one based on a
clear understanding of the domain and existing social science data about it.

The final piece of advice is not technical or methodological but presentational. In applying a novel
method, be prepared to suffer equally at the hands of those who don’t understand it and those who
do! One of the hardest things to do in academia is to strike a balance between rejecting ill founded
criticisms or those that translate to “I just don’t like this” without also rejecting real objections that
may devalue months (or even years) of your effort (and still, frustratingly for you, be part of “good
science”). To judge criticisms in a novel area, you must be especially well informed and thus
confident of your ground. For example, there is no clear cut evidence for Lamarckism (modification
of the genotype by the phenotype during the life of the organism in a way that can the be
transmitted by reproduction) in biology but in social systems such processes are ubiquitous.
(Someone discovers a good way to discipline children. Those who were thus disciplined do the same



thing to their children. This is an acid test because, with hindsight, the “victims” have to see it as
beneficial, and thus not have been warped by it, even if it was hateful at the time. Punishments so
nasty that the victims won’t inflict them or so ineffective that the parents stop bothering will die
out.) Failure to understand this issue may either set you on the path of non-Lamarckian (and thus
quite possibly implausible) evolutionary models of social systems or of apologising mistakenly for
building Lamarckian models which don’t “truly” reflect biological evolution (when that was never the
design criterion for using biological analogies in social science anyway). The best way to address
these issues is hopefully to follow the systematic procedure outlined above. This minimises the
chances that you will miss things which critics can use to reject your models (and if they are hostile
enough, your whole approach) and ensures that by justifying the models to yourself, you can
actually justify them to others. In popular scientific folklore Darwin (still the greatest evolutionist)
spent a considerable period trying to anticipate all possible objections to his theory and see how
valid they were (and what counters he could provide) before he presented his work. Given how
fraught the acceptance of his theory has been anyway, imagine if he had not troubled to take that
step!

We hope we have shown, by the use of diverse case studies and different evolutionary modelling
techniques both the considerable advantages and (potentially avoidable) limitations of this approach
and encourage interested readers to take these ideas forward both in developing new kinds of
models and applying evolutionary models to novel domains. The field is still wide open and we are
always pleased to hear from potential students, co-workers, collaborators, supporters or funders!

Further Reading
GA

Koza

[xx. What's this for? Why would one read FR rather than references?]
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