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Causal Inference

Will assume that this is always inference about interventions.

Epidemiology is often concerned with finding and assessing the size of

the effect of modifiable risk factors on diseases so that (public health)

interventions can be informed — always about causality!

Examples for interventions:

Adding folic acid to flour

Banning smoking in pubs

Dietary advice: “5 portions of fruit & vegetables a day” etc.
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Problems with Inferring Causality

• Epidemiology mainly based on observational studies

• “Association 6= causation” i.e. might find an association but

intervention turns out to be useless

• Randomised trials are the ideal “gold standard” but not always

possible for ethical or practical reasons

• observational findings often not reproduced in randomised trials.

• Possible reasons:

– reverse causation

– confounding

– selection effect etc.
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Interventions

Causal vocabulary is often used carelessly in the literature.

We must formally distinguish between association and causation and for

this, we need special notation.

Intervention: setting X to a value x denoted by do(X = x).

p(y|do(X = x)) not necessarily the same as p(y|X = x).

• p(y|do(X = x)) depends on x only if X is causal for Y

⇒ observed in a randomised study.

• p(y|X = x) also depends on x with confounding/reverse causation

⇒ observed in an observational study.

e.g. X = yellow fingers, Y = lung cancer.
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Causal Effect

Some contrast in the effects of different interventions on X on the

outcome Y i.e. compare p(y|do(X = x1)) with p(y|do(X = x2)).

Average Causal Effect: ACE(x1, x2) = E(Y |do(x1)) − E(Y |do(x2))

Risk Ratio: CRR(x1, x2) =
p(Y = 1|do(X = x1))

p(Y = 1|do(X = x2))

Odds Ratio: COR(x1, x2) =
p(Y = 1|do(X = x1))p(Y = 0|do(X = x2))

p(Y = 0|do(X = x1))p(Y = 1|do(X = x2))

Mathematically, the causal effect is identifiable (hence estimable) if

we can re-express it purely in observational terms i.e. without do(X).
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Identifiability using Instrumental Variables

Standard Approach “No unobserved confounding”: Assumes all

confounders (or a sufficient set) measured ⇒ adjust for them in

regression models in the usual way.

Can not always assume this −→ need to deal with confounding by other

means, e.g. instrumental variables (IVs)

There are different types of assumption required:

(in)dependencies

structural

}

allow testing for causal effect

parametric form for estimation
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Core Conditions

For the effect of X (phenotype/exposure) on Y (disease) in the presence

of unobserved confounding, U , a third observable variable G qualifies

as an instrument if

1. G⊥⊥U : G independent of unobserved confounders

2. G⊥⊥/ X: G associated with phenotype/exposure

3. G⊥⊥Y | (X,U): G and Y conditionally independent given X and U .

G is only associated with disease via its effect on the

phenotype/exposure with X,

Cannot forget about U!
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Core Conditions — Graphically

DAG — shorthand way to encode conditional independence restrictions.

YG X

U(1)

(3)

(2)

NOTE: Assumptions 1 and 3 cannot be easily tested from data as

U is typically not known/measured ⇒ justification must be based on

background/subject matter knowledge.
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Core Conditions — Graphically

YG X

U

Equivalent to factorisation

p(g, x, y, u) = p(y|x, u)p(x|u, g)p(u)p(g).

Also need structural assumption for causal inference:

p(y|x, u), p(g) and p(u) are not changed by intervention in X,

i.e. when conditioning on do(X).
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Core Conditions — Graphically

YG X

U

With structural assumption: under intervention in X

p(y, u, g|do(X = x∗)) = p(y|x∗, u)p(u)p(g)

Graphically, the intervention corresponds to removing all arrows leading

into X.
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Testing for Causal Effect

With these conditions alone, we have that there is

no causal effect of X on Y iff G independent of Y .

YG X

U

So any test for association between G and Y can be taken as a test

for a causal effect of X on Y — regardless of the distributions of G,X

and Y . (Katan 1986)
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Mendelian Randomisation

An Instrumental Variable (IV) method — with genotype as instrument.

• Consider risk factors that are modifiable behaviours or phenotypes

known to be caused by, or strongly related to, certain genotypes;

• Mendel’s Second Law (law of assortment): genotypes can reasonably

be assumed to be independent of life style etc. — typical confounding

factors ⇒ kind of ‘randomised’;

• Genes are determined before birth, no reverse causation possible;

• Conjecture: if and only if phenotype is causal for disease should we

find an association between genotype and disease.

Katan (1986) letter to Lancet, Davey Smith & Ebrahim (2003),Lawlor et al.

(2008),Greenland(2000), Hernán & Robins (2006), Didelez & Sheehan (2007)
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Example: Alcohol Consumption

Alcohol
consumption

Disease

unobserved
Lifestyle / 

confounders

?

Chen et al. (2008)

Alcohol consumption has been found in observational studies to have

positive ‘effects’ (coronary heart disease) as well as negative ‘effects’

(liver cirrhosis, some cancers, mental health problems).

But also strongly associated with all kinds of confounders (lifestyle etc.),

as well as subject to self–report bias. Hence doubts in causal meaning

of above ‘effects’.
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Example: Alcohol Consumption

Genetic Instrumental Variable?

Genotype: ALDH2 determines blood acetaldehyde, the principal

metabolite for alcohol.

Two alleles/variants: wild type *1 and “null” variant *2.

*2*2 homozygous individuals suffer facial flushing, nausea, drowsiness

and headache after alcohol consumption.

⇒ *2*2 homozygotes have low alcohol consumption regardless of their

other lifestyle behaviours

i.e. the gene can be taken as a proxy for alcohol intake.

IV–Idea: check if these individuals have a reduced risk for “alcohol-

related” health problems!
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Example: Alcohol Consumption

Alcohol
consumption

DiseaseALDH2
genotype

unobserved
Lifestyle / 

confounders

?

(1)

(2)

Note 1: due to random allocation of genes at conception, can be fairly

confident that genotype is not associated with unobserved confounders.

Further evidence: in extensive studies no evidence for association with

observed confounders, e.g. age, smoking, BMI, cholesterol.

(see also Davey Smith et al. 2007)
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Example: Alcohol Consumption

Alcohol
consumption

DiseaseALDH2
genotype

unobserved
Lifestyle / 

confounders

?

(1)

(2)

Note 2: due to known ‘functionality’ of ALDH2 gene, we can exclude

that it affects the typical diseases considered by another route than

through alcohol consumption.

⇒ important to use well studied genes as instruments!
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Example: Alcohol Consumption

Alcohol
consumption

DiseaseALDH2
genotype

unobserved
Lifestyle / 

confounders

?(3)

Note 3: association of ALDH2 with alcohol consumption well

established, strong, and underlying biochemistry well understood.
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Example: Alcohol Consumption
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Note 3: association of ALDH2 with alcohol consumption well

established, strong, and underlying biology well understood.
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Example: Alcohol Consumption

Alcohol
consumption

DiseaseALDH2
genotype

unobserved
Lifestyle / 

confounders

?

Note 4: if the above is our causal graph, then under the null–

hypothesis of no causal effect of alcohol consumption, there should be

no association between ALDH2 and disease;

While if alcohol consumption has a causal effect we would expect an

association between ALDH2 and disease.
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Example: Alcohol Consumption
Findings: (Meta-analysis by Chen et al. 2008)

Blood pressure on average 7.44mmHg higher and risk of hypertension

2.5 higher for *1*1 homozygotes than for *2*2 homozygotes (only

males).

⇒ mimics the effect of large versus low alcohol consumption.

Blood pressure on average 4.24mmHg higher and risk of hypertension

1.7 higher for *1*2 heterozygotes than for *2*2 homozygotes (only

males).

⇒ mimics the effect of moderate versus low alcohol consumption.

⇒ it seems that even moderate alcohol consumption is harmful.

Note: studies mostly in Japanese populations (where ALDH2*2*2 is

common) and where women drink only little alcohol in general −→

No association between variant and BP/hypertension in women.
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Problems with Mendelian Randomisation

Poor inferences may occur due to poor estimates of G− X and G − Y

associations

—a genetic epidemiology problem. May need very large studies.

The core conditions can be violated in many different ways

—an instrumental variable problem

But some situations that ‘look’ like violations are okay.

GRAPHS can be used to check these conditions.
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Estimation of Causal Effect

Requires parametric assumptions e.g. linearity & no interactions.

Plus: structural assumption

E(Y |X = x,U = u) = E(Y |do(X = x), U = u) = µ + βx + δu

Then: (2SLS) consistent estimator for ACE(x + 1, x) = β is

β̂IV =
β̂Y |G

β̂X|G

and st.dev(β̂IV ) =
σGσY |X

σG,X

where β̂Y |G and β̂X|G are least squares regression coefficients.

Note: weak instrument (σG,X ≈ 0) makes β̂IV unstable.
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Typical Mendelian Randomisation IV Applications

• Y is binary (X continuous, G categorical),

• p(y|x, u) hence non-linear. Not always clear how target causal

parameter is related to relevant coefficients from the two regressions

—involves marginalising over U and result typically dependent on
(unknown) distribution of U e.g. logistic case

E(Y | do(X = x)) =

∫

exp(α + β1x + β2u)

1 + exp(α + β1x + β2u)
p(u)du 6=

exp(α∗ + β1x)

1 + exp(α∗ + β1x)

even if U normally distributed — non-collapsibility of logistic

regression model (Greenland et al. 1999).

• typically want COR or CRR — not ACE.
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IV Methods for Binary Outcome

Various IV estimators for binary outcomes are used in Epidemiology.

They all make different additional and strong parametric assumptions

i.e. besides the core conditions and structural assumption.

They may target different causal parameters depending on what is

assumed (local versus population effects).

When assumptions are violated, resulting estimates will be biased

estimates of the target causal effect.

Can be quite sensitive to these assumptions and have all been shown to

behave unreliably in a small numerical study.

Didelez, Meng & Sheehan (2010) Statistical Science. In Press
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Issues

• All measurements in a Mendelian randomisation study are prone to

measurement error. Need to check core conditions apply to observed

values rather than underlying values

• Weak instrument: Many gene–phenotype associations are weak

possibly due to population stratification / LD / genetic heterogeneity

/ measurement errors or when behaviour (e.g. under social pressure)

‘overrules’ genetic predisposition.

• Finding good genetic instruments: functionality of genes not well

understood if only based on association studies.

• Case-control data: selection on disease status violates core IV

condition.

• Sampling versus asymptotic behaviour of these estimators?

25



Conclusion

• Despite historical reluctance, we need to be able to use causal

terminology in epidemiology.

• Need a formal causal framework to disentangle associational and

causal concepts.

• IV methods avoid the assumption of no unobserved confounding —

but make other assumptions instead!

• What do these mean in epidemiological applications? Can we live

with them for any particular application?

• Causal inference always requires background knowledge to verify that

assumptions are met −→ genetics for Mendelian randomisation.

• Must pay attention to details as not all IV methods target the same

causal parameters. “Sometimes, we get what we need”. (Angrist &

Pischke 2009)
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