Analysing the spatio-temporal distribution of crime in Lancashire

Irene Kaimi, Peter Diggle and Alexandre Rodrigues
Overview

• The MADE project
• Data
• Statistical Formulation
• Results
• Work in progress
The MADE project

Multi Agency Data Exchange
A data warehouse tool for all the datasets which are relevant to crime and disorder and are available throughout Lancashire.

Goal
To help people within Lancashire to make a more informed decision about community safety issues in their neighbourhood.
Objectives

• Develop a statistical model for the spatio-temporal distribution of recorded crimes
• Implement predictive inference as R code
• Develop web-based real- probabilistic mapping of local (in space and time) variations in crime-rate
The MADE Data

Information, for each reported crime:

- location (lower super-output area)

 LSOA: Minimum population 1000, mean population 1500; built from Output Areas

- time (day, hour, minute)

- type of crime:
 - other wounding (19%)
 - criminal damage (51%)
 - serious acquisitive crime (30%)

+ LSOA population

+ Spatial covariates at LSOA level
The MADE Data

• Data cover whole of Lancashire, divided into 940 LSOA’s

• Time-period: 1 April 2003 to 31 March 2009 (412,589 records)
Exploratory Analysis

LSOA’s in Lancashire
Exploratory Analysis

Time series of daily crime counts by category

The three categories show qualitatively different behaviour ⇒ analyse separately.
Exploratory Analysis

Rates of crimes

Other wounding

Criminal damage

Serious acquisitive crime
Exploratory Analysis

Spatial covariates: Deprivation rates

[Maps showing income and employment deprivation rates with color scales indicating the range from 0 to 0.7.]
Exploratory Analysis
Spatial covariates - Deprivation indices

- Education
- Health
- Barriers to housing
- Living environment
Exploratory Analysis

Blackpool North shore overview - licensed premises
Statistical Formulation

The underlying spatio-temporal point process that generates the number of crimes Y_{it} within LSOA $i; i = 1, \ldots, N$ at the time point $t; t = 1, \ldots, T$ has intensity

$$\lambda(x, t) = \mu(x, t)R(x, t), \ x \in \mathcal{R}^2, \ t \in \mathcal{R}$$

- $\mu(x, t)$: deterministic spatio-temporal variation in the mean number of incident crimes per unit time
- $R(x, t)$: a spatio-temporal stochastic process
 * models the residual spatio-temporal variation
 * its covariance function determines the form of dependence between space and time
 Statistical Formulation

Assume multiplicative spatial and temporal deterministic variation, i.e. \(\mu(x, t) = \lambda(x) \mu(t) \) where

- \(\mu(t) \) temporal variation in the spatially averaged incidence rate
- \(\lambda(x) \) overall purely spatial variation in the intensity of reported crimes

Local variations within LSOA’s cannot be identified,

\[\Rightarrow \lambda(x) = \lambda_i \text{ (constant) for all } x \text{ in } LSOA_i \]
Statistical Formulation

The process that generates the crimes is assumed to be a spatio-temporal log-Gaussian Cox Process.

Hence,

\[R(x, t) = \exp\{S(x, t)\}, \]

- \(S(x, t) \) is a stationary spatio-temporal Gaussian process such that \(E(\exp\{S(x, t)\}) = 1 \).
- \(S(x, t) \) has covariance function \(\gamma(u, v) = \sigma^2 \rho(u, v) \) where \(\rho(\cdot, \cdot) \) is a spatio-temporal correlation function, and \(u \) and \(v \) denote spatial and temporal lags, respectively.
Statistical Formulation

Take $t = 1, \ldots, M$ days.
Scale $\lambda(x)$ such that $\int_A \lambda(x) = 1$
$\rightarrow \mu(t) =$ temporal variation in the mean number of incident crimes per day
$\Rightarrow \textbf{Data}: Y_{it} :$ number of crimes on day t; $t = 1, \ldots, M$, in $LSOA_i; i = 1, \ldots, N$.
Conditional on the unobserved process $R(\cdot)$,

$$Y_{it} | R(\cdot) \sim Poisson \left(\lambda_i \mu(t) \int_{LSOA_i} R(x, t) dx \right)$$

- Poisson number of counts
- Straightforward calculation of the covariance structure
Statistical Formulation

For our log-Gaussian Cox process the second-order intensity function

\[\lambda_2(u, v) = \exp\{\gamma(||x - y||, v)\}, \]

where \[\gamma(||x - y||, v) = \sigma^2 \rho(u, v). \] Then,

\[
\text{Cov}\{Y(i, t), Y(j, t-v)\} = \mu(t)\lambda_i\mu(t-v)\lambda_j \left[\int_{x,y \in A_i \times A_j} \exp\{\gamma(||x - y||, v)\}dxdy - |A_i||A_j| \right],
\]

where \(A_i \) represents the \(i^{th} \) LSOA and \(|A_i|\) is the area of the region \(A_i \). The variance is given by

\[
\text{Var}\{Y(i, t)\} = \{\mu(t)\lambda_i\}^2 \left[\int_{x,y \in A_i} \frac{\exp\{\gamma(||x - y||, 0)\}dxdy}{|A_i|^2} - 1 \right] + \mu(t)p_i,
\]

where \(p_i = \lambda_i A_i \).
Estimation of $\mu(t)$

We first fit a semi-parametric model for $\mu(t)$ of the form

$$\log(\mu_t) = Z_t'\beta + f(t)$$ \hspace{1cm} (3)

where Z_t is a vector of covariates at time t and f is a smooth, but otherwise unspecified, function of time. Explanatory variables:

- day-of-week effect, $\delta_{d(t)}$, $d(t) = 0, 1, \ldots, 6$ as a seven-level factor,
- sine-cosine terms with periods of twelve and six months to capture seasonal effects and
- low-order polynomial time-trends.
Estimation of $\lambda(x)$

- $y_i; i = 1, \ldots, N$ the number of crimes in $LSOA_i$
- $W = (w_1, \ldots, w_N)$ the matrix of q spatial covariates.

$Y_i \sim$ Poisson with mean $N_i \lambda_i$, and

$$\lambda_i = \exp(\beta_i w_i),$$

(4)

- the β_i’s are parameters to be estimated and
- N_i is the population of the i^{th} LSOA, $\Rightarrow \lambda_i$ the crime-rate in the i^{th} LSOA.

Covariates:

- density of licensed premises
- deprivation rates/scores for six domains
Estimation of \(S(x, t) \)

- \(\rho(u, v) \) is separable, i.e. \(\rho(u, v) = \rho_S(u)\rho_T(v) \),

\[C_{i,j}(t, t - v) = \text{Cov}\{Y(i, t), Y(j, t - v)\} \]

the moment-based estimates of \(\sigma^2 \) and \(\theta_S \) minimise the criterion

\[
\sum_t \sum_i \sum_j \left\{ \hat{C}_{i,j}(t, t) - C_{i,j}(t, t) \right\}^2 , \quad (5)
\]

\[\hat{C}_{i,j}(t, t) = Y(i, t)Y(j, t) - \mu(t)p_i\mu(t)p_j. \]

- non-separable covariance function \(\rho(u, v) \)

Minimise with respect to model parameters the expression

\[
\sum_{v=1}^{v_0} \sum_{t=v+1}^{T} \sum_i \sum_j \left\{ \hat{C}_{i,j}(t, t - v) - C_{i,j}(t, t - v) \right\}^2 . \quad (6)
\]
Estimation of $S(x, t)$

Making things simpler

- \[\int_{x,y \in A_i \times A_j} \exp\{\gamma(||x - y||, v)\} \, dx \, dy = \exp\{\gamma(||c_i - c_j||, v)\} A_i A_j, \]
 where c_i is the centroid of area A_i

- $\text{Cov}\{Y(i, t), Y(j, t - v)\} = \mu(t)p_i\mu(t - v)p_j[\exp\{\gamma(||c_i - c_j||, v)\} - 1]$

- Denote $Z(i, j, t, v) = \frac{Y(i,t)Y(j,t-v)}{\mu(t)p_i\mu(t)p_j}$

- $E[Z(i, j, t, v)] = \exp\{\gamma(||c_i - c_j||, v)\}$

- Hence,
 \[\frac{1}{T - v} \sum_{t=v+1}^{T} Z(i, j, t, v) \rightarrow \exp\{\gamma(||c_i - c_j||, v)\} \]
Results

Overall temporal variation $\mu(t)$
Models:

- **Semi-parametric:**
 * $\log(\mu_t) = \delta_d(t) + f(t)$
 * $\log(\mu_t) = \delta_d(t) + \alpha_1 \cos(\omega t) + \beta_1 \sin(\omega t) + \alpha_2 \cos(2\omega t) + \beta_2 \sin(2\omega t) + f(t)$

- **Parametric:**
 * $\log(\mu_t) = \delta_d(t) + \alpha_1 \cos(\omega t) + \beta_1 \sin(\omega t) + \alpha_2 \cos(2\omega t) + \beta_2 \sin(2\omega t) + \epsilon_1 t + \epsilon_2 t^2$.
Results

Overall temporal variation $\mu(t)$

- Strong and significant day of week effects, Thursday (lowest) - Sunday (highest)
- Log-linear time trend significant; log-quadratic time trends gives unequivocal significant improvement in model fit for all three crime categories
- Sine and cosine terms significant; different seasonal pattern for each crime category
Results

Overall temporal variation $\mu(t)$
Average weekly fit of GLM (black line) and GAM (red line) compared with the actual number of cases
Results

Overall spatial variation $\lambda(x)$

- The effect of density of licensed premises is statistically significant for all three types of crime ($p\text{-value} < 0.0001$).
- Deprivation indices/rates effects vary in size and significance for the three categories of crime.
Spatial regression - Results

Other wounding

- Not significant: Income and housing barriers effects
- Significant: Employment, health, living environment, education
- Employment deprivation rate effect high (2.8). Rate of other wounding crime in a LSOA in Blackburn (employment deprivation = 50%) is 4.1 times the rate in a LSOA in Lancaster (employment deprivation = 1%)
Spatial regression - Results

Criminal damage

- Not significant: Employment
- Significant: Income, health, barriers to housing and benefits, education, living environment,
Spatial regression - Results

Serious acquisitive crime

• Not significant: Employment, barriers to housing, income
• Significant: Health, living environment, education
• Size of health and disability deprivation index effect: 0.64
• e.g. index of health deprivation in a LSOA in Ribble Valley is \(-1.24\), whereas index of deprivation in a LSOA in Blackburn is 3.23
⇒ rate of serious acquisitive crime in the LSOA in Blackburn is \(\exp(0.64 \times 4.47) = 17.5\) times greater than the rate in the LSOA in Ribble Valley.
Individual districts

- 14 local authority districts
- Both urban and rural districts
- Wide range of socio-economic conditions
- The pattern of crime varies considerably over the 14 districts
- The geographical region covered by each district is different
- Different geographical shape of each district, number of LSOA’s forming the district, and sizes affect the form of the spatial dependence between LSOA’s within the same district.
Results

Lancaster - Preston - Blackpool

- Different seasonal pattern
- The intercept term of the model is different in each case.
- Different form for the quadratic time function in each case.
- The weekday effects only marginally distinct
- The significance of the density of licensed premises is consistently high for the three districts.
- The rates and scores of the six domains of deprivation have variable statistical significance and size of effects.

\[\therefore \] Effects of temporal and spatial covariates and spatio-temporal correlation are not the same throughout the county of Lancashire.
Results

Spatio-temporal interaction

Match theoretical and empirical descriptors of the spatial covariance structure of the point process model to find its form
Results

Spatio-temporal interaction

\[\gamma(0, v) \propto \exp\left(-\frac{v}{\phi_T}\right) \quad \gamma(u, 0) \propto \exp\left(-\frac{u}{\phi_S}\right) \]
Results

$$\gamma(u, v) = \sigma^2 \exp(-u/\phi_S) \exp(-v/\phi_T)$$
Results

Separable model

- $\gamma(u, v) = \sigma^2 \exp(-u/\phi_S) \exp(-v/\phi_T)$

- Minimise $\sum_t \sum_i \sum_j \left\{ \hat{C}_{i,j}(t, t) - C_{i,j}(t, t) \right\}^2$

- Consider pair (i, j) such as $||c_i - c_j|| < 3000$ meters
Results
Results

Highest correlation 33, 26, 30, 6
Work in progress

Prediction

• Use a Markov Chain Monte Carlo algorithm to generate a sample from the predictive distribution of the spatio-temporal surface $S(x, t)$ conditional on the observed spatio-temporal pattern of crimes up to and including time t.

• Find space-time clusters of crimes, by evaluating the predictive probability $Pr(R(x, t) > c | \text{data})$, where c is a threshold value above which an alarm is triggered.

• Plot the exceedance probabilities as a colour-coded map to highlight LSOA’s in which these probabilities are high.