

Leading education and social research Institute of Education University of London

Estimating migration flows during the inter-censal period in Northern Ireland by health characteristics measured in the Census

John W McDonald

Outline

- migration of British residents born in
 New Commonwealth 4 by 4 table
- migration in NI by health status measured in the Census - 3 by 3 table(s)
- In features of migration data & QI model
- Bayesian framework for inference
- $\hfill\square$ results, discussion and model extensions

Residence in 1966 & 1971

Residence	R	Residence in 1971				
in 1966	CC	L&Y	WM	GL	Total	
CC	118	12	7	23	160	
L&Y	14	2 1 2 7	86	130	2357	
WM	8	69	2 5 4 8	107	2732	
GL	12	110	88	7712	7 922	
Total	152	2318	2729	7972	13171	

CC: Central Clydeside L&Y: Lancashire & Yorkshire WM: West Midlands GL: Greater London slide 3

Migration from 1966 to 1971 (flows)

Residence	Residence in 1971				
in 1966	CC	L&Y	WM	GL	Total
СС		12	7	23	42
L&Y	14		86	130	230
WM	8	69		107	184
GL	12	110	88		210
Total	34	191	181	260	666

CC: Central Clydeside L&Y: Lancashire & Yorkshire WM: West Midlands GL: Greater London slide 4

Model origin-destination flows

$$\log \mathsf{flow}_{ij} = \mu + \alpha_i + \beta_j, \ + \lambda_{ij} \qquad i \neq j$$

- $\mu\,$ overall level of migration
- α_i pushing factor for *i* th origin
- β_j pulling factor for j th destination
- λ_{ij} origin i and destination j interaction

quasi-independence (QI) if $\lambda_{ij} = 0$ for $i \neq j$

Adjusted residuals: QI off diagonal

Residence Residence in 1971 in 1966 CC L&Y WM GI $\mathbf{C}\mathbf{C}$ -.27 -1.38 1.47 L&Y 1.25 -1.71 .81 WM -.36 -.56 .74 GI - 47 72 - 44

 $L^2 = 4.367$ on 5 df, p = .50

Features of migration flow data

interested in off-diagonal cells (flows)

often flows partially observed, i.e. some/all off-diagonal cell counts missing

 accurate external estimates of the marginal totals may be available

Only marginal totals of flows known

Residence	R	Residence in 1971				
in 1966	CC	L&Y	WM	GL	Total	
СС					42	
L&Y					230	
WM					184	
GL					210	
Total	34	191	181	260	666	

CC: Central Clydeside L&Y: Lancashire & Yorkshire WM: West Midlands GL: Greater London slide 8

LS, SLS & NILS have differences ONS Longitudinal Study (LS) Scottish Longitudinal Study (SLS) Northern Ireland Longitudinal Study (NILS) LS & SLS - initial sample from the census NILS - initial sample from health card registration data NILS linked twice yearly to health card registration data slide 9

	E&W LS	SLS	NILS			
Number Dates	4	20	104			
Size	500,000	300,000	500,000			
	(1%)	(5%)	(28%)			
Start Date	1971	1991	2001			
Number of Censuses	4	2	1			
Data on	Bi	rths to sample mothe	ers			
all 3 LSs	Bir	ths of sample memb	ers			
	Deaths of sample members					
	Immigrants					
	Embarkations					
		Widow(er)hoods				

	E&W LS	SLS	NILS
Births to Sample Fathers			✓
Stillbirths/ Infant Deaths	✓		✓
Internal Migration			✓
Cancer Registrations	✓	✓	
Hospital Episodes		1	
Education		✓	
Marriages		1	✓
Claimant Count	✓		

NILS data

access from NISRA safe setting

research must relate to health

all primary data analysis in safe setting

outputs must be cleared so they do not raise confidentiality or disclosure issues

must work with aggregated categories so all cell counts > disclosure value of 10

NILS flows crossing LGD boundaries

Residence	Residence June 2008				
July 2007	Belfast	Eastern	Western		
Belfast	0				
Eastern					
Western					

by long term limiting illness reported in Census: Yes, No, non-Census NILS member

NILS flows crossing LGD boundaries

Residence	Residence June 2008				
July 2007	Belfast	Eastern	Western	Total	
Belfast	0	186	25	211	
Eastern	111	263	64	438	
Western	27	60	147	234	
Total	138	509	236	883	

long term limiting illness = Yes

Adjusted residuals: QI not (1,1) cell

Residence	Residence June 2008					
July 2007	Belfast	Eastern	Western			
Belfast	0	7.31	-7.31			
Eastern	4.22	3.50	-7.08			
Western	-4.22	-10.37	15.41			

long term limiting illness = Yes $L^2 = 223.4$ on 3 df Source: Northern Ireland Longitudinal Study

slide 15

Adjusted residuals: QI off diagonal

Residence	Residence June 2008					
July 2007	Belfast	Eastern	Western			
Belfast	0	1.88	-1.88			
Eastern	-1.88	0	1.88			
Western	1.88	-1.88	0			

long term limiting illness = Yes $L^2 = 3.496$ on 1 df, p= .062

NILS flows crossing LGD boundaries

Residence	Residence June 2008					
July 2007	Belfast	Eastern	Western	Total		
Belfast	0	896	218	1114		
Eastern	581	1550	366	2497		
Western	231	340	707	1278		
Total	812	2786	1291	4889		

long term limiting illness = No

Adjusted residuals: QI not (1,1) cell

- Residence Residence June 2008 Eastern Western **July 2007** Belfast Belfast -10.1810.18 () Eastern 3.67 12.44 -16.63 Western -3.67 -22.7629.19
- long term limiting illness = No $L^2 = 814.1$ on 3 df

Adjusted residuals: QI off diagonal

Residence	Residence June 2008					
July 2007	Belfast	Western				
Belfast	0	4.29	-4.29			
Eastern	-4.29	0	4.29			
Western	4.29	-4.29	0			

long term limiting illness = No $L^2 = 18.32$ on 1 df, p= .000

Notation

y_{ij} – true flow from region i to region j

 z_{ij} – reported flow from region i to region j

reported flows
$$\boldsymbol{z} = \{ z_{ij}, i \neq j \}$$
 complete

true unknown flows $\boldsymbol{y} = \{ y_{ij}, i \neq j \}$

assume marginal totals of $oldsymbol{y}$ are known

Bayesian inference

parameters random with distributions

- prior to data
- posterior given data
- apply Bayes Theorem
- posterior \propto likelihood \times prior

posterior distribution used for inference

Bayesian framework

lognormal approximates discrete distribution

$$\log z_{ij} \stackrel{\text{ind}}{\sim} N\left(\log y_{ij}, \sigma^2\right) \qquad i \neq j$$

on the log scale, reported values are

 \Box unbiased

 $\hfill\square$ of the same accuracy

Inference for model unknowns

 $f(oldsymbol{y},\,\sigma^2\,)$ is *prior* distribution for $(oldsymbol{y},\,\sigma^2\,)$

inference based on *posterior* distribution

$$f(\boldsymbol{y}, \, \sigma^2 \,|\, \boldsymbol{z}\,) \,=\, \frac{f(\, \boldsymbol{z} \,|\, \boldsymbol{y}, \, \sigma^2\,) \,f(\, \boldsymbol{y}, \, \sigma^2\,)}{f(\, \boldsymbol{z}\,)}$$

inference about a given flow obtained from its marginal distribution $f(y_{ij} | \boldsymbol{z})$

Inference for model unknowns ...

assume true flows follow prior distribution centred on quasi-independence (QI)

$$\log y_{ij} \sim N(\mu + \alpha_i + \beta_j, \tau^2) \qquad i \neq j$$

Inference for model unknowns ...

main idea: produce estimates which best reflect the observed values given that

they must also satisfy known margins

quasi-independence fitted values often provide good estimates of the true flows

Hierarchical model

$$\log z_{ij} \sim N(\log y_{ij}, \sigma^2) \quad i \neq j$$

$$\log y_{ij} \sim N(\mu + \alpha_i + \beta_j, \tau^2) \times I[\bullet]$$

indicator $I\left[\sum_{j} y_{ij} = y_{i+}, \sum_{i} y_{ij} = y_{+j}\right]$ maintains the marginal constraint

Hierarchical model . . .

hyperparameters: set by considerations of data quality and belief in QI model

posterior distribution too complex for direct computations so use simulation methods to learn about the posterior

Markov chain Monte Carlo methods

hybrid Gibbs & Metropolis-Hastings steps

Gibbs steps: conditional conjugacy of priors \Rightarrow sampling from conditionals easy

Y must always satisfy the marginal constraints so exact generation is difficult and we use a Metropolis-Hastings step

Metropolis-Hastings step

proposal
$$\mathbf{Y}' = \mathbf{Y} + \begin{pmatrix} +\epsilon & -\epsilon & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & -\epsilon & +\epsilon \end{pmatrix}$$

 $\epsilon \sim$ uniform with bounds set by counts in selected rows/columns to ensure that no entries in the proposal can be negative

Metropolis-Hastings step ...

proposal ${\bf Y}'$ is accepted with probability $\min\{1,f({\bf Y}')/f({\bf Y})\}$

where f is given by full joint density with all other parameters at their current values

do not insist that ϵ is integer, which makes construction of an irreducible Markov chain to sample from much more straightforward

Metropolis-Hastings step ...

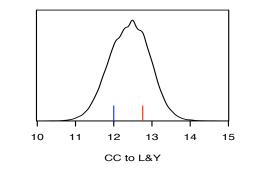
use QI fitted values as initial ${\bf Y}$ values for the MCMC simulation

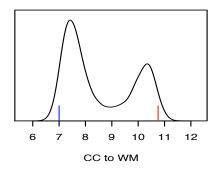
QI fitted values are useful for comparison with the results of the MCMC analysis

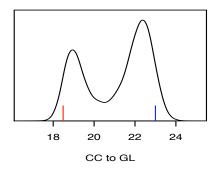
Migration from 1966 to 1971 (flows)

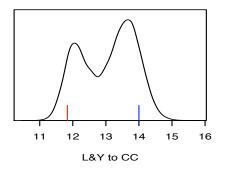
Residence	Residence in 1971				
in 1966	СС	L&Y	WM	GL	Total
СС		12	7	23	42
L&Y	14		86	130	230
WM	8	69		107	184
GL	12	110	88		210
Total	34	191	181	260	666

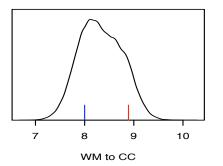
margins of flow table (\mathbf{Z}) were used as true known margins of \mathbf{Y} for MCMC simulation

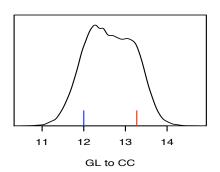

MCMC simulation results

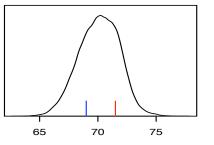

 $\hfill\square$ 500 000 iterations

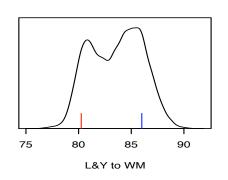

 $\hfill\square$ estimated posterior densities for each entry of true migration flow matrix Y

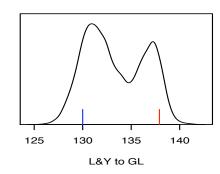

 \Box posteriors maximized close to z_{ij}

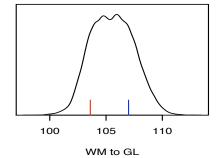

□ bimodal posterior when discrepancy between observed & QI values ⇒ considerable uncertainty as to the magnitude of the true flow

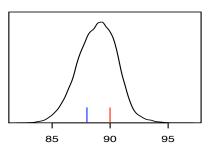


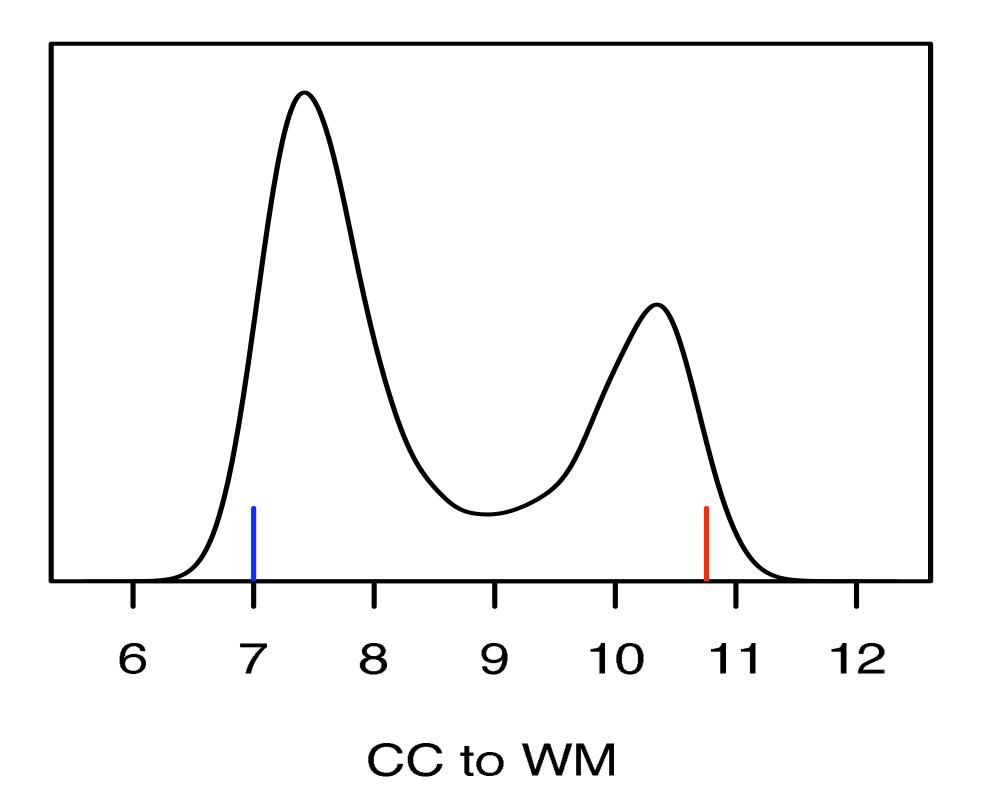







WM to L&Y





MCMC simulation results

different priors lead to different behavior

if τ^2 takes larger values, representing lower confidence in QI model, then secondary mode around the QI estimate diminishes

correspondingly, credible interval estimates become narrower

Discussion and model extensions

framework assumes that the margins of migration flow matrix are known

assumption of known margins can be relaxed to allow for error in the margins, presumably with a smaller variance than the errors in the cell counts

Discussion and model extensions ...

prior belief: QI structure of true flows

QI structure likely to be oversimplistic

regions sharing borders are likely to have greater flows than the QI model predicts, since there will be an interaction term which the QI model lacks Discussion and model extensions ...

possible to add a parameter for contiguity into the modelling process

$$\log y_{ij} = \mu + \alpha_i + \beta_j + \gamma d_{ij} \qquad i \neq j$$

$$d_{ij} = \begin{cases} 1 & i, j \text{ share a border} \\ 0 & \text{otherwise} \end{cases}$$

Bayesian modelling framework

individual migration flow estimates

with associated measures of precision

natural way to incorporate prior information about migration process and data quality

can combine multiple data sources

calibration to known marginal totals

Acknowledgement

"The help provided by staff of the Northern Ireland Longitudinal Study (NILS) and NILS Research Support Unit is acknowledged. NILS is funded by the HSC R&D function of the Public Health Agency. The authors alone are responsible for the interpretation of the data."