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1. Introduction 

 

The development of school performance measurement in England has seen a move from 

specialist studies by academic institutions (for example Tymms and Coe, 2003 review the work 

of the CEM Centre based at the University of Durham while Goldsten et al, 1993 is one example 

analysing a well-known dataset on Inner London schools) through to the initial use of simple 

school measures in national tables and the introduction of ‘value-added’ and the current 

‘contextual value-added’ tables produced by DCFS (Ray, 2006). This current approach utilises 

multilevel modelling (Goldstein, 2003) to allow for the control of individual pupil characteristics 

such as prior attainment as well as more contextual factors such as the composition of pupil 

performance within the school, leaving the school ‘random effect’ (with a confidence interval) as 

a measure of the impact the school had on the pupil’s performance that cannot be explained by 

measured characteristics of the pupil or their peers. These measures can be appropriate for 

judging school performance but as Leckie and Goldstein (2009) show, not school choice by 

parents, who need a measure of the school’s performance several years into the future. In this 

paper we will concentrate on developing a measure of school performance appropriate for 

judging current performance and therefore school accountability but not appropriate for school 

choice. In addition, we will not impose apriori any structure on the data allowing the potential to 

compare performance of Local Authorities without the need to include explicit additional 

structure into our modelling. We apply the approach to evaluating schools in London using the 

linked National Pupil Database (NPD) / Pupil Level Annual School Census (PLASC) data set 

for the cohort of pupils in year 11 (age 16) in 2007/8. We produce appropriate measures of error 

to accompany our school performance measures as well as map the performance across Local 

Authorities showing that controlling for pupil characteristics goes some way to explaining 

differing performance at age 16 for pupils across London. 

 

 

2. Approaches to Measuring School Performance 

 

The recent paper by Leckie and Goldstein (2009) gives an excellent history of the development 

of school performance measurement in England resulting in the current contextual value-added 

models outlined in Ray (2006). In this section we review this approach and highlight some 

weaknesses. We propose an alternative approach that addresses some of the concerns expressed 

in relation to the current approach. 
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2.1. Reviewing the Current Approach 

 

The current approach outlined in Ray (2006), and more flexible extensions by Leckie (2009) and 

Leckie and Goldstein (2009), essentially fits a linear model to the mean performance of pupils at 

age 16 corresponding to the end of compulsory schooling (referred to as key-stage 4), 

conditional on their prior attainment at age 11 (referred to as key-stage 2), the prior attainment 

of other pupils in the same cohort within their school, and other contextual factors such as 

whether the pupil receives free school meals (a means tested benefit associated with low income 

families) and the deprivation of the local area the pupil lives in. The pupil performance is 

measured by a score calculated from converting the grades in their eight best exams (typically 

GCSEs) to a points score. The exams are taken at around age 16 at the end of compulsory 

schooling in England. Often the performance measures are standardised, both at outcome and 

prior attainment, to be mean zero and standard deviation one to aid the interpretation of impacts 

but this is not necessarily required. The current CVA model (Ray, 2006) fits on the original scale 

of the variables while the recent work by Leckie and Goldstein (2009) transform the data onto a 

normal scale using the ranks of the original distributions. If the school has no additional impact 

on performance, coming say from the management structure within the school and its support 

of the teaching staff and pupil learning, the pupil residuals would be uncorrelated with each 

other. In reality, there is a residual school effect evidenced by a non-zero correlation across pupil 

residuals within schools (the mean of the pupil residuals is not zero) and therefore we can 

efficiently model the structure using a multilevel regression approach (Goldstein, 2003). The 

multilevel framework can then be extended considerably to allow for school effects over time 

(Leckie and Goldstein, 2009 is a recent paper covering this), cross-classified models to allow for 

the impact of local area (Leckie, 2009 going back to Garner and Raudenbush, 1991) as well as 

mobility (Leckie, 2009, and Goldstein, Burgess and McConnell, 2007). 

 

The approach in the current models used by DCSF (Ray, 2006) applies the simple random 

effects specification giving a single measure of the school impact. The model assumes that this 

school impact is additive and constant across the pupils within a school. The impact comes from 

the school level residual in the random intercepts model and this is typically assumed to be 

normally distributed with independence between schools, independence of pupils within schools 

after controlling for the common school effect, and of course independence between the school 
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residuals and the pupil level variables in the model. This final assumption results in the constant 

additive effect of the school. In reality, the assumptions of a normal distribution, constant effect, 

and even independence between schools can be problematic. 

 

The problems partly come from the outcome being modelled. The score only takes the best eight 

GCSEs for each pupil to prevent a school entering pupils into lots of exams to inflate their 

overall score (Ray, 2006). However, the performance of the best performing pupils is essentially 

capped meaning that schools with higher performing pupils do not appear to add much value as 

a linear model can extrapolate that these pupils should do better than the capped score allows. 

Therefore the pupil residuals are lower and potentially forced to be negative leading to a low 

estimate of the school impact. In other words, the capping violates the constant variance 

assumptions of the model. We can deal with this within a multilevel framework by extending the 

level one error structure to capture non-constant variance (Goldstein, 2003) but this is an 

extension that has not been widely used. Goldstein and Thomas (1996) allow the pupil residual 

variance to vary by gender while Goldstein et al (1993) explored variation on pupil prior 

attainment. However, to the knowledge of the authors this approach has not been applied to the 

more recent nationally available pupil performance data and it is not the approach we take here 

to deal with this issue. 

 

A related issue is the assumption of a uniform additive effect for the school across all pupils. 

This can be violated two ways. Firstly, as outlined in the previous paragraph, the non-constant 

variance and capping implies that adding the same absolute value to a pupil’s performance does 

not have the same ‘value’ across the prior attainment range. It is easier to make absolute 

improvements at the bottom end of the scale. Secondly, even if this first issue is not a problem, 

the value added by the school may well depend on the pupil’s characteristics. The second point 

can be incorporated by the use of random slopes at the school level (Goldstein and Thomas, 

1996 is one example) and such adjustments are particularly relevant when parents are choosing a 

suitable school (Leckie and Goldstein, 2009). However, in this paper we are restricting to the use 

of school effects to judge current performance and therefore the single random intercept gives 

an average of the school’s added value, even if it does not reflect the variable nature of that 

impact for the different pupils within the school.  
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2.2. An Alternative Framework for Pupil Performance and School Effects 

 

In Section 2.1 we have highlighted some of the issues that occur with the current application of 

multilevel modelling. In this section we motivate an alternative approach that helps address some 

of these issues. We start by considering the individual performance of the pupils. Each pupil has 

a set of characteristics and context that drives their performance in the exams at age 16. If we 

compare across pupils with similar backgrounds we can start to consider their relative 

performance. This can be thought of as how efficient a pupil is with the particular set of 

circumstances they have and leads us to explore the literature in relation to production efficiency. 

More efficient pupils will perform better relative to those with similar inputs as measured by the 

prior attainment and similar ‘production environment’ measured by the contextual covariates. 

(Haveman and Wolfe, 1995 is an example from an Economic perspective viewing a child’s 

achievement as the outcome of inputs by the pupil, their family and society or government.) 

Kokic et al (1997) introduce the use of m-quantile regression as a measurement of relative 

production-performance that they argue has good properties and we propose applying this 

technique to model the pupils’ efficiency.  

 

Once we have an efficiency measure for each pupil, we then impose the school structure. If the 

school has an impact it will allow pupils to be more efficient (inefficient) and so the average 

efficiency within a school will move away from the average efficiency across all pupils (around 

0.5). This is similar to looking for correlation within schools in the pupil level errors. This 

aggregating of the individual quantile measures to get an ‘area’ summary links in with the recent 

extension of m-quantile models to small area estimation problems, where we wish to account for 

small area effects in our modelling (Chambers and Tzavidis, 2006). Interestingly, this school 

measure will then give a summary to aid judging the school performance but it will no longer 

necessarily satisfy the fourth criterion for measuring production-performance laid down by 

Kokic et al (1997). This is because the school impact for a group of pupils within the school can 

depend on the prior attainment and links to the concept of random slopes for schools in the 

multilevel literature. 

 

This alternative approach still forces the idea of a constant school effect but this effect is no 

longer a simple additive impact across pupils. It actually represents an efficiency gain or loss 

relative to the population average of the pupils. The actual impact on a student’s performance as 

measured by their exam scores will depend on the distribution of performance at their level of 
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the covariates and this therefore allows for the differing variance in performance across the 

range of prior attainment. Related to this we also reduce the potential impact of capping as the 

approach recognises that at high levels of prior attainment the distribution of the outcome will 

be much tighter as a result of the capping but there will still be an ordering from the most to 

least efficient pupils. 

 

As this approach is based on m-quantiles it is naturally more robust to distributional issues with 

the outcome variable than a standard multilevel approach. An alternative approach taken by 

Leckie and Goldstein (2009) to address this issue is via a transformation of the data to make it 

better approximate a normal distribution. We prefer to try a modelling approach that is robust 

rather than a transformation approach. In addition, the transformation approach does not tackle 

the issue of the non-constant residual variance and this requires more complex random 

structures, such as a random slope at level one on prior attainment, increasing further the 

complexity of the model. 

 

An additional advantage of this approach is that we get the full distribution of the pupil 

efficiencies within schools but this is driven by the data rather than a distributional assumption 

imposed apriori on the pupil level residuals. Therefore we can summarize the school effect as 

not only the mean but other summaries such as the median or the proportion of pupils within a 

school above the upper quartile. Also, as we have not imposed structure on the model so we can 

summarize pupil performance at the local authority level (the local administrative units within 

London) or compare the performance of groups within school. In the subsequent analysis we 

will demonstrate these aspects by mapping performance at the local authority level across 

London and comparing the performance within mixed schools for males and females. Of course, 

the multilevel framework can also provide a measure at the local authority level by extending to 

three levels and a school level random slope on gender (Goldstein and Thomas, 1996) would 

allow for a difference in the school impact by gender. However, we see the advantage of our 

approach being you model the pupil level performance and can then explore performance at 

different levels (schools, local geography, sub-groups) without having to pre-specify them in the 

model. 

 

 

 

 



9 
 

2.3. Outline of the Paper 

 

In Section 3 of the paper we introduce the reader to m-quantile modelling with the necessary 

technical detail and formally state our measure of performance at the school level. In Section 4 

we then outline an application of a non-parametric bootstrap to estimate the standard error of 

any efficiency measure, which is crucial if we are to use the performance measure (Goldstein and 

Speigelhalter, 1996) to make judgements about the relative performance of institutions or other 

sub-groups. This is supported by a small model-based simulation. In Section 5 we apply the 

approach to data for pupils and schools in London in 2008 and in Section 6 we present 

illustrative results at the school and local authority level. Finally in Section 7 we draw some 

conclusions from the analysis. 

 

 

3. Modelling Conditional Quantiles 

 

The classical theory of linear statistical models is a theory of conditional expectations. That is, a 

regression model summarises the behaviour of the mean of Y at each point in a set of X’s 

(Mosteller and Tukey, 1977). Unfortunately, this summary provides a rather incomplete picture, 

in much the same way as the mean gives an incomplete picture of a distribution. It is usually 

much better to fit a family of regression models, each one summarising the behaviour of a 

different percentage point (quantile) of Y at each point in this set of X’s. This can be achieved 

using quantile regression. This demonstrated in Figure 1, which plots in blue pupil performance 

at 16 against their prior attainment at 11. The red dots show the fitted mean for a quadratic 

regression of pupil performance at 16 using performance at 11 as a prior attainment, while the 

grey dots show quantiles for the same model fitted at 1%, 5%, 25%, 50%, 75%, 95% and 99%.  

 

[Figure 1 Here] 

 

The seminal paper by Koenker and Bassett (1978) is usually regarded as the first detailed 

development of quantile regression. In the linear case, quantile regression leads to a family of 

planes indexed by the value of the corresponding percentile coefficient (0,1)q ∈ . For each value 

of q, the corresponding model shows how the qth quantile of the conditional distribution of Y 

given X, varies with X. For example, when q = 0.5 the quantile regression line shows how the 

median of this conditional distribution changes with X. Similarly, when q = 0.1 this regression 
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line separates the top 90% of the conditional distribution from the lower 10%. A linear model 

for the qth conditional quantile of Y given a vector of covariates X is  

( | ) = T

q qQ Y ββββX X  ,      (1)  

and q
ββββ  is estimated by minimising ( ) ( ){ }

1

(1 ) 0 0
=

− − − ≤ + − >∑
n

T T T

i i i i i i

i

y q I y qI yx x xβ β ββ β ββ β ββ β β  with 

respect to ββββ . Solutions to this minimisation problem are usually obtained using linear 

programming methods (Koenker and D’Orey, 1987). Functions for fitting quantile regression 

now exist in standard statistical software, e.g. the. R statistical package (R Development Core 

Team, 2004). 

 

 

3.1. Using the M-quantile approach 

 

Quantile regression can be viewed as a generalisation of median regression. In the same way, 

expectile regression (Newey and Powell, 1987) is a “quantile-like” generalisation of mean 

regression. M-quantile regression (Breckling and Chambers, 1988) integrates these concepts 

within a common framework defined by a “quantile-like” generalisation of regression based on 

influence functions (M-regression).  

 

The M-quantile of order q for the conditional density of Y given X is defined as the solution 

( ; )ψ
q

Q X  of the estimating equation ( ) ( | ) 0ψ − =∫ q
Y Q f Y dYX , where ψ  denotes the 

influence function associated with the M-quantile. A linear M-quantile regression model is one 

where we assume that  

( | ; ) ( )ψψ = T

q
Q Y qββββX X ,     (2)  

that is, we allow a different set of regression parameters for each value of q. For specified q and 

ψ , estimates of these regression parameters can be obtained by solving the estimating equations 

1

( )ψψ
=

=∑
n

q iq i

i

r 0X ,      (3) 

where ( )ψ ψ= − T

iq i i
r Y qββββX , { }1( ) 2 ( ) ( 0) (1 ) ( 0)

q iq iq iq iq
r s r qI r q I rψ ψ ψ ψψ ψ −= > + − ≤  and s is a 

suitable robust estimate of scale, e.g. the MAD estimate / 0.6745
iq

s median r ψ= . In this paper 

we use a Huber Proposal 2 influence function, ( ) ( ) sgn( )u uI c u c c uψ = − ≤ ≤ + . Provided c is 
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bounded away from zero, estimates of ( )ψ qββββ are obtained by iterative weighted least squares. 

The steps of the algorithm are as follows: 

1. Start with initial estimates ( )ψ qββββ and s; 

2. Form residuals iq
r ψ   

3. Define weights ( ) /
i q iq iq

w r rψ ψψ=  

4. Update ( )ψ qββββ using weighted least squares regression with weights 
i

w ; 

5. Iterate until convergence. 

 

These steps can be implemented in R by a straightforward modification of the IWLS algorithm 

used for fitting M-regression (Venables and Ripley, 2002, section 8.3). 

 

M-quantile regression is synonymous to outlier robust estimation. However, an advantage of M-

quantile regression is that it allows for more flexibility in modelling. For example, the tuning 

constant c can be used to trade robustness for efficiency in the M-quantile regression fit, with 

increasing robustness/decreasing efficiency as we move towards quantile regression and 

decreasing robustness/increasing efficiency as we move towards expectile regression. 

 

3.2. An M-quantile measure of school performance 

 

Let us assume that the output of a school j can be measured by a single variable Y for example, 

GCSE performance and that this output is associated with a set of explanatory (input) variables 

X and for the time being, let us assume that we have data only at school level. Kokic et al. (1997) 

proposed a measure of production performance that is based on the use of M-quantile models.  

Let us assume that the quantiles of the conditional distribution ( )|f Y X can be model using a 

linear function as in (2). 

 

Using (2), the M-quantile measure of performance is defined as follows: If the qth M-quantile 

surface implied by (2) passes through ( )j j
,Y X , the performance measure for the jth school is 

j
=p q  and the higher the value of j

p  the better the school performance. Until this point we have 

assumed that data are available only at school level. In most cases, however, data are available for 
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pupils clustered with schools. This creates a two level hierarchical structure, which we should 

account for.   Below we use 
ij

Y  and 
ij
 X to denote the data for pupil i in school j. 

 

Multilevel models assume that variability associated with the conditional distribution of Y given 

X can be at least partially explained by a pre-specified hierarchical structure. The idea of 

measuring hierarchical effects via an M-quantile model has recently attracted a lot of interest in 

the small area estimation literature (Chambers and Tzavidis 2006; Tzavidis et al. 2010) and also 

in other applications (Yu and Vinciotti). Following the development in Chambers and Tzavidis 

(2006), we characterise the conditional variability across the population of interest by the M-

quantile coefficients of the population units. For unit i in cluster (school) j with values ij
Y  and 

ij
X , this coefficient is the value ij

p  such that ( ; )ψ =
ijp ij ij

Q YX . Note that these M-quantile 

coefficients are determined at the population level. If a hierarchical structure does explain part of 

the variability in the population data, we expect units within the clusters defined by this hierarchy 

to have similar M-quantile coefficients. Consequently, we characterise a cluster by the location of 

the distribution of its associated unit (pupil)-level M-quantile coefficients. In particular, the M-

quantile measure of performance is defined as 

1

1

−

=

= ∑
jN

j j ij

i

p N q .     (4) 

 

The measure of performance defined by (4) is an extension of the M-quantile measure of 

performance proposed by Kokic et al. (1997) that accounts for the hierarchical structure of the 

data. Estimation of (4) is performed as follows.  Following Chambers and Tzavidis (2006), we 

first estimate the M-quantile coefficients { }; ∈
i

q i s  of the sampled units without reference to the 

groups (schools) of interest. A grid-based procedure for doing this under (3) is described by 

Chambers and Tzavidis (2006) and can be used directly with (4). We first define a fine grid of q 

values in the interval (0,1). Chambers and Tzavidis (2006) use a grid that ranges between (0.01 to 

0.99) with step 0.01. We employ the same grid definition and then use the sample data to fit (3) 

for each distinct value of q on this grid. The M-quantile coefficient for unit i with values 
i

Y  and 

i
X  is calculated by using linear interpolation over this grid to find the unique value 

i
q  such that 

ˆ ( ; )ψ ≈
iq i i

Q YX . A school j  specific M-quantile measure of performance, ˆ
j

p  is then estimated 

by the average value of the unit (pupil) M-quantile coefficients in school j , 
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1

1

ˆ ˆ−

=

= ∑
jn

j j ij

i

p n q .      (5) 

The advantage of this approach is that we have the efficiencies, 
i

q , for each pupil i and therefore 

the averaging done in (5) to give the school value can be done also across a higher level of 

geography (such as local authority) or done across pupil sub-groups such as males and females 

within schools without the need to pre-specify complex structures in the modelling. 
 

 

 

4. Mean Squared Error Estimation 

 

In this section we describe a non-parametric bootstrap approach to MSE estimation of the M-

quantile measure of school performance that is based on the approach of Lombardia et al. (2003) 

and Tzavidis et al. (2010). In particular, we define two bootstrap schemes that resample residuals 

from an M-quantile model fit. The first scheme draws samples from the empirical distribution of 

suitably re-centred residuals. The second scheme draws samples from a smoothed version of this 

empirical distribution. Using these two schemes, we generate a bootstrap population, from which 

we then draw bootstrap samples. 

 

 

4.1. Implementing the Bootstrap 

 

In order to define the bootstrap population, we first calculate the M-quantile model residuals 

ˆ ( )ψ= −
ij ij ij

e y qx
T ββββ . A bootstrap finite population * *

{ , }, , 1, ,= ∈ = K
ij ij

U y i U j dx  with 

* *ˆ ( )ψ= +
ij ij ij

y q ex
T ββββ  is then generated, where the bootstrap residuals *

ij
e  are obtained by sampling 

from an estimator of the CDF ˆ ( )G u  of the ij
e . In order to define ˆ ( )G u , we consider two 

approaches: (i) sampling from the empirical CDF of the residuals ij
e  and (ii) sampling from a 

smoothed CDF of these residuals. In each case, sampling of the residuals can be done in two 

ways: (i) by sampling from the distribution of all residuals without conditioning on the group 

(the unconditional approach); and (ii) by sampling from the conditional distribution of residuals 

within the group j (the conditional approach). The empirical CDF of the residuals is 

 1

1

ˆ ( ) ( )−

= ∈

= − ≤∑∑
j

d

ij s

j i s

G u n I e e u ,  (6) 
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where 
s

e  is the sample mean of the ij
e . Similarly, the empirical CDF of these residuals in group j 

is 

 1ˆ ( ) ( ),
j

j j ij sj

i s

G u n I e e u
−

∈

= − ≤∑  (7)

 

where sj
e  is the sample mean of the ij

e  in group j. A smoothed estimator of the unconditional 

CDF is 

 ( ){ }1 1

1

ˆ ( ) − −

= ∈

= − +∑∑
j

d

ij s

j i s

G u n K h u e e ,  (8) 

where h  > 0 is a smoothing parameter and K is the CDF corresponding to a bounded symmetric 

kernel density k. Similarly a smoothed estimator of the conditional CDF in group j is 

 ( ){ }1 1ˆ ( ) − −

∈

= − +∑
j

j j j ij sj

i s

G u n K h u e e ,  (9) 

where 0>
j

h  and K are the same as above. In the empirical studies reported in Section 4.2, we 

define K in terms of the Epanechnikov kernel, ( )( ) ( )2( ) 3 / 4 1 1= − <k u u I u , while the 

smoothing parameters h  and j
h  are chosen so that they minimize the cross-validation criterion 

suggested by Bowman et al. (1998). That is, in the unconditional case, h  is chosen in order to 

minimize 

 { }
2

1

1

( ) ( ) ( )−

−
= ∈

 = − ≤ − ∑∑∫
j

d

ij s i

j i s

CV h n I e e u G u du ,  (10) 

where ( )−i
G u  is the version of ( )G u  that omits sample unit i, with the extension to the 

conditional case being obvious. It can be shown (Li and Racine, 2007, section 1.5) that choosing 

h  and j
h  in this way is asymptotically equivalent to using the MSE optimal values of these 

parameters.  

 

In what follows we denote by j
p  the unknown true M-quantile measure of school performance, 

by ˆ
j

p  the estimator of j
p based on sample j

s , by *

j
p  the known true M-quantile measure of 

school performance of the bootstrap population *

j
U , and by ˆ ∗

j
p  the estimator of *

j
p  based on 

bootstrap sample *

j
s .  

 

We estimate the MSE of the M-quantile measure of school performance as follows. Starting 

from the sample s, we generate B bootstrap populations, *bU , using one of the four above-
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mentioned methods for estimating the CDF of the residuals. From each bootstrap population, 

*bU , we select L samples using simple random sampling without replacement within the schools 

with * =
j j

n n . The bootstrap estimator of the MSE of ˆ
j

p is then 

 { } ( )
2

2
1 1 1 1 *

1 1 1 1

ˆ ˆ ˆ( )av
B L B L

*bl *bl *bl b

j j j j j

b

L

l b l

MSE B L p p B L p p
∧

− − − −

= = = =

 
= − + − 

 
∑∑ ∑∑ . (11) 

In (12) *b

j
p  is the school j value of the characteristic of interest for the bth bootstrap population 

and 1

1

)v ˆ ˆ(a −

=

= ∑
L

*bl *bl

j j

l

L
p L p , where ˆ*bl

j
p  is the estimator of this characteristic computed from the 

lth sample of the bth bootstrap population, (b = 1,…,B, l = 1,…,L). Note that this bootstrap 

procedure can also be used to construct confidence intervals for the value of j
p  by ‘reading off’ 

appropriate quantiles of the bootstrap distribution of ˆ
j

p .  

 

 

4.2. Monte-Carlo evaluation of the MSE estimator  

 

A small scale model-based Monte-Carlo simulation study was designed for evaluating the 

performance of the bootstrap MSE estimator of the M-quantile measure of performance. The 

population data on which this simulation was based is generated from a 2-level random 

intercepts model (individuals nested within groups (schools)). The model parameters used for 

generating the Monte-Carlo populations are obtained from fitting a 2-level random intercepts 

model to the 2008 linked NPD / PLASC data. The outcome variable is the post attainment, we 

control for the effect of prior attainment and the random effects are specified at the school level. 

In particular, population data are generated using 57 14
ij ij j ij

y x γ ε= − + + + , where 

~ (27,4)
ij

x N , ~ (0,17.15)
j

Nγ and ~ (0,65.13)
ij

Nε . We generate in total 250 populations 

with a total size 16020 units in 40 schools. The school population sizes range from 200 to 590 

with an average of 400 units per school. From each of the 250 populations we take independent 

samples by randomly selecting pupils within the 40 schools. The group sample sizes range from 

20 to 59 with an average of 40 units per group. For each sample, estimates of the M-quantile 
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measure of performance were obtained using the methodology of Section 3 and an M-quantile 

model that included as main effect ij
x . For each Monte-Carlo simulation bootstrap MSE 

estimation for the M-quantile measure of performance was implemented by generating a single 

bootstrap population and then taking L = 250 bootstrap samples from this population. The 

bootstrap population was generated unconditionally, with bootstrap population values obtained 

by sampling from the smoothed residual distribution generated by the sample data obtained in 

each Monte Carlo simulation. The performance of the MSE estimator is assessed using the 

percentage relative bias of the bootstrap MSE estimator defined by  

 
( )1 1

1

ˆ( ) 100
K

i ik i
i

k

RB M mean M K M M
− −

=

 
= − × 

 
∑ .  (12) 

Here the subscript i indexes the schools and the subscript k indexes the K Monte Carlo 

simulations, with ˆ
ik

M  denoting the simulation k value of the MSE estimator in school i, and 
i

M  

denotes the actual (i.e. Monte Carlo) MSE in area i.  In addition to the relative bias we compute 

coverage rates of 95% confidence intervals which are constructed using the M-quantile measure 

of school performance plus or minus twice its estimated standard error. The coverage rate is 

defined as the number of times this confidence interval includes the true M-quantile measure of 

performance and for a 95% confidence interval this rate must be close to 95%. 

 

The results from this simulation studies are set out in Table 1 and Figure 2. The bootstrap MSE 

estimator tracked the true (empirical MSE over Monte-Carlo simulations) MSE of the M-

quantile measure of school performance and provided coverage rates that were close to the 

nominal 95%.  On average, the relative bias was very low (1%-2%) and for the majority of the 

schools this bias did not exceed 5%. The maximum relative bias was 14%, however, relative 

percentage figures must be interpreted with care in this case as the MSE estimates are small 

values. This is apparent by looking at the numbers of the actual and estimated MSEs for the 

school with the highest relative bias. This is school 34 and the estimated MSE is 0.0366 whereas 

the actual (Monte-Carlo) MSE is 0.032. These results suggest that the non-parametric bootstrap 

scheme we proposed in Section 4 can be reliably used for estimating the MSE of the M-quantile 

measure of school performance.  
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[Table 1 Here] 

 

[Figure 2 Here] 

 

 

5. Modelling Pupil Performance across London 

 

In this section we now turn to the full application of the approach to pupils in schools in 

London. We utilise the linked NPD/PLASC data to provide information on pupils background, 

their performance at age 11 (prior attainment) and their performance at age 16 (the outcome). 

To make the demonstration more straightforward we start with the 81,882 pupils that are sitting 

exams within the right cohort (age 16 during the 2007/08 academic year). We then select those 

that have performance information at both time-points (we lose just under 10,000 pupils), linked 

PLASC data to provide the background information (we lose just under 5,900 pupils), and finally 

we drop three schools that each contain a single pupil. This leaves us with 66,209 pupils. 

 

 

5.1. Modelling the Pupil Performance 

 

For the purposes of showing what can be achieved with this approach, we utilise a model 

specification similar to the CVA model outlined in Ray (2006) and readers should refer to this 

for a detailed motivation of the model specification. The outcome (pupil performance at 16) is a 

score based in the pupils eight best exams. These are typically GCSEs (the standard exam taken 

at age 16 at the completion of compulsory education in England) and eight GCSEs with top 

grades of A* give a total score of 464. Pupils can exceed this maximum by taking exams in a few 

subjects at a more advanced level at age 16 but for most pupils this creates a cap to their 

performance measure. Prior attainment at age 11 is captured by the pupils mean performance 

across Mathematics, English and Science (which has a quadratic relationship through the 

inclusion of a squared term) as well as the differences between the pupil’s mean and their 

individual scores in Mathematics and English. We also control for the school level mean in prior 

attainment and the standard deviation of pupil prior attainment within school. (For simplicity, we 

use the pupils’ mean prior attainment at age 11 to calculate these school level variables while Ray, 

2006 uses a measure at age 14.) To control for pupil background we include an indicator for 

receipt of free school-meals as a proxy for the pupil coming from a low income family, an 
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indicator of local area income for the pupils’ home address, as well as indicators of the pupils’ 

age within the school year, gender, ethnicity, first language at home, special educational needs, 

and movement across local authority boundaries between ages 11 and 16.    

 

 

5.2. Brief Discussion of the fitted Models 

 

The motivation behind this paper is not to define a revised model specification at the pupil level 

for contextual value-added modelling of school performance, but rather propose an alternative 

framework in which to explore the schools’ performance. However, to demonstrate that the M-

quantile modelling is behaving as would be expected, Table 2 compares the model parameters 

from the standard CVA approach (two-level random intercepts model with pupils within 

schools) against the M-quantile median line. 

 

[Table 2 Here] 

 

From Table 2 we can see the same pattern emerging for both models, such as the lower 

performance (conditional on all other factors) for those pupils receiving free school meals. Some 

of the effects, while in the same direction are less pronounced in the median model such as the 

quadratic shape for the average prior attainment, which may indicate the presence of some 

outliers in the data. Standard errors are provided with both models. We should note that while 

the random effects model has adjusted its standard errors for correlation within schools the M-

quantile model has not (and so its standard errors are likely under-estimated). This is not an issue 

for the performance measure as the grouping structure is taken into after estimating the 

individual efficiencies and the bootstrap approach we use (outlined in Section 4) does account 

for the appropriate structure. However, it does raise the importance issue of model fitting and 

the specification of the model structure, which we have not dealt with here given we are 

reproducing the standard CVA model.  

 

 

6. Evaluating the School and Local Authority Impact 

 

In this section, we now use the results from the pupil level modelling in Section 5, which results 

in the 
i

q ’s for each individual pupil being estimated, to construct a measure of school 
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performance (see Section 3.2) as well as exploring within schools and at a higher level of 

aggregation comparing across the local authorities in London. 

 

 

6.1. School Performance  

 

We define the school performance as the mean of the pupils’ 
i

q ’s and as this moves away from 

the overall pupil mean of 0.52 it represents the school adding to the efficiency of the pupils or 

reducing the efficiency of the pupils. Of course, to judge this we need a confidence interval 

around the school efficiency measure and this can be calculated via an estimated standard error 

resulting from the bootstrap (see Section 4). These confidence intervals can be adjusted to allow 

for multiple pair-wise comparisons between schools (Goldstein and Healy, 1995) but here we 

just present estimates with standard 95% confidence intervals to illustrate the approach. Figure 3 

presents this information as a caterpillar plot for six mixed schools from across London with a 

range of estimated school efficiencies. The schools were chosen to have relatively small errors on 

the overall q’s to demonstrate the potential impacts that can be seen across schools.   

 

[Figure 3 Here] 

 

As is common in these situations (see for example Leckie and Goldstein, 2009), the width of 

these 95% confidence intervals demonstrate how careful we should be regarding comparing 

schools to the overall mean or comparisons between schools (for which adjusted confidence 

intervals would be needed). In addition, as these are mixed schools the efficiency of the school 

has been calculated separately for boys and girls with corresponding standard errors and 

confidence intervals. As the sample sizes for these gender specific efficiencies are smaller the 

confidence intervals of course become correspondingly wider. This makes finding truly 

significant differences difficult but interestingly in five of the six schools the school efficiency for 

girls is higher, and this is after we have controlled for gender at the individual pupil level. 

 

 

6.2. Comparing Performance across Local Authorities 

 

Our modelling approach at the pupil level does not apriori impose a structure on the data and 

this then allows us to produce an average performance measure at the local authority level 
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(averaging the pupils’ 
i

q ’s across local authorities rather than individual schools). However, the 

bootstrap outlined in Section 4 samples pupil residuals within schools when applied at the school 

level and so to produce standard errors at the local authority level we re-run the bootstrap 

respecting this structure rather than the school structure. 

 

We compare across the local authorities by mapping the average q’s. Figure 4a is the marginal 

performance of each local authority based on averaging the pupils’ 
i

q ’s from a null (intercept 

only) model so that we are comparing like with like. When making these comparisons and 

interpreting the measures it is important to remember the M-quantiles do not exactly match the 

empirical distribution so the empirical mean and median are not usually 0.5. The four colours 

represent a group of local authorities clearly below the marginal mean for the pupils, one 

spanning the mean (around 0.53), and two above the mean showing the positively skewed nature 

the performance measures. Figure 4b is the conditional or ‘contextual value-added’ performance 

mapped using the same legend to allow easy visual comparison. 

 

[Figure 4 Here] 

 

Comparing the two maps clearly shows less variation across the local authorities, once pupil 

background and context has been controlled. In particular, the highest performing group on the 

marginal map does not exist on the conditional map. In addition, the large area of poor 

performing local authorities east of central London on the marginal map have all generally 

improved once the controls are introduced. However, these conditional performance measures 

are still subject to variability and therefore Figure 5 uses three colours to highlight those local 

authorities with performance significantly above the overall mean of the conditional q’s (0.52), 

those significantly below, and those in the middle based on whether the estimated 95% 

confidence interval around the local authority estimates includes the overall mean. 

 

[Figure 5 Here] 

 

Figure 5 reveals two areas in south London that can be considered significantly below the mean 

and across London there are some areas significantly above, but many cannot be considered 

different from the mean. This again warns against simply ranking based on the q’s due to the 

uncertainty.  
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7. Discussion 

 

In this paper we have introduced an alternative framework for assessing the impact of schools 

on their pupils’ performance. The standard approach to contextual value-added modelling uses a 

random effects model to account for the residual impact of the school. However, this approach 

makes fairly strong distributional assumptions and leads to a single measure. More complex 

comparisons require more complex structures within the models. Our alternative approach 

utilises the robustness of M-quantiles and as it leads to a measure of efficiency for the individual 

pupils we can summarize performance at a variety of levels without requiring additional structure 

in the modelling. We have chosen to use the mean, but as we have modelled the entire 

distribution of performance, we can produce other summaries such as the proportion of pupils 

within schools coming in the top 25% of the overall distribution to highlight schools that 

particularly contribute to top pupil’s having high efficiency. 

 

To explore a differing impact of the school by gender within the multilevel framework would 

require a random slope at the school level on gender. Unlike our approach, this would give an 

overall impact of gender differences at the school level but to do this imposes a structure in 

relation to the variance of the school level random effects by gender. The approach we have 

used here does not impose any overall structure (we cannot say there is a general impact of 

gender on school effects) but is therefore flexible in terms of the actual impacts at the level of 

the individual school. However, with both approaches finding significant impacts within 

individual schools will likely be difficult due to the uncertainty across pupils at this level, as 

shown in Figure 3. Exploring higher level impacts, such as the local authorities we have looked 

mapped (Figures 4 and 5), can again be achieved within the multilevel framework by extending 

the fitted model to include the extra level. However, as our approach has estimated the efficiency 

at the pupil level we can explore the impact of this level without the need for additional 

modelling. 

 

One issue we should acknowledge is that of model fitting. In this work we have utilised a similar 

model specification to the standard CVA model (Ray, 2006) and so standard errors on the model 

parameters were not needed to judge the model specification. However, standard errors are 

produced with each model (Table 2 presents them for the median) but, as noted in section 5, 

these will not be adjusted to account for any higher level clustering in the data. The issue of 
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appropriate standard errors for model parameters is therefore a future area of research, although 

the standard errors on the performance measures calculated via the bootstrap do adjust for 

clustering in the population so that Figure 3 and 5 do give a fair picture of quality, given a model 

specification. 
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Table 1 

Across schools distribution of the true (i.e. Monte Carlo) mean squared error, average over 

Monte Carlo simulations of estimated mean squared error, relative bias (%) of the bootstrap 

MSE estimator and coverage rates of nominal 95% confidence intervals for the M-quantile 

measure of school performance (5).  

MSE Percentiles of across schools distribution 

 Min 25th 50th Mean 75th Max 

 

True 0.027 0.033 0.040 0.041 0.044 0.067 

        

Bootstrap 0.028 0.034 0.040 0.041 

 

0.043 

 

0.065 

 

          Relative Bias (%) -7.27 -2.21 0.98 2.01 5.04 

 

14.51 

 

Coverage  0.928 0.940 0.948 0.952 0.961 0.984 

The estimated mean squared error is based on (11) using the smoothed unconditional approach. 

Intervals were defined as the M-quantile measure of school performance estimated by (6) plus or 

minus twice its estimated standard error, calculated as the square root of (11).  
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Table 2 

Comparison of the coefficients from the standard random effects approach to CVA with the 

coefficients from the median M-quantile model 

 CVA Model M-quantile Median Model 

Variable Estimate Standard 

Error 

Estimate Standard 

Error 

Const 151.52 24.80 110.08 8.76 

KS2. Average Score (fine grade) -4.19 0.55 -1.42 0.45 

KS2 Average Score (squared) 0.31 0.01 0.26 0.01 

KS2 Difference from Average 

(English)   
0.36 0.08 0.40 0.06 

KS2 Difference from Average 

(Mathematics)   
0.23 0.09 0.22 0.07 

Pupil receives Free School Meals -7.55 0.64 -5.08 0.53 

IDACI Score 

(Pupil's Home Address) 
-30.09 1.56 -24.29 1.14 

Pupil is Male -13.13 0.57 -13.67 0.40 

Age within School Year -0.80 0.07 -0.69 0.06 

English As First Language -16.47 0.82 -13.83 0.65 

Not SEN Ref  Ref  

sen1 -39.43 1.63 -33.36 1.35 

sen2 -35.18 0.66 -26.26 0.52 

White British Ref  Ref  

White Other 14.57 1.06 15.93 0.85 

Black African 23.88 1.02 21.34 0.82 

Black Caribbean  9.45 1.02 7.86 0.81 

Black Other 11.53 1.71 9.60 1.40 

Indian 22.31 1.27 21.88 0.97 

Pakistani 18.72 1.52 17.39 1.20 

Bangladeshi 21.47 1.65 18.69 1.21 

Chinese 32.18 2.75 28.67 2.28 

Asian Other 28.43 1.58 27.26 1.29 

Mixed 5.59 1.00 5.77 0.82 

Other 21.69 1.43 23.00 1.16 

Unknown 4.66 4.15 9.73 3.45 

Different LA (KS2 to KS4) -2.21 0.62 -0.27 0.48 

School Mean (KS2 Average Score) 3.41 0.68 3.48 0.18 

School Standard Deviation 

(KS2 Average Score) 
-1.67 1.59 -1.00 0.38 
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Figure 1: Comparing the fitted mean line (red) with fitted lines (grey) covering quantiles at 

1%, 5%, 25%, 50%, 75%, 95% and 99%. 
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Figure 2: True (empirical) Mean Square Error (Red Line) and estimated Mean Square Error 

(black line) of the M-quantile measure of school performance. The Estimated 

mean squared error based on (11) using the smoothed unconditional approach. 
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Figure 3: Caterpillar plot for school comparing males and females 
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Figure 4: Mapping pupil performance across the Local Authorities of London 

 

a) Mapping the mean of the marginal q values for pupils 

 

 

b) Mapping the mean of the conditional q values for pupils 
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Figure 5: Highlighting Local Authorities with a mean q-value significantly above the overall 

pupil mean (overall mean not within the estimated 95% confidence interval for 

the Local Authority mean) 
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